Gang Yu

List of Publications by Citations

Source: https://exaly.com/author-pdf/6288923/gang-yu-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 17,188 115 334 h-index g-index citations papers 21,096 7.13 343 9.3 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
334	Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. <i>Journal of the American Chemical Society</i> , 2013 , 135, 105	52 5 -312	902
333	Pharmaceuticals and personal care products in the aquatic environment in China: a review. <i>Journal of Hazardous Materials</i> , 2013 , 262, 189-211	12.8	614
332	Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. <i>Water Research</i> , 2009 , 43, 1150-8	12.5	454
331	Adsorption behavior and mechanism of perfluorinated compounds on various adsorbentsa review. Journal of Hazardous Materials, 2014 , 274, 443-54	12.8	438
330	Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. <i>Emerging Contaminants</i> , 2015 , 1, 14-24	5.8	395
329	Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. <i>Water Research</i> , 2010 , 44, 417-26	12.5	341
328	Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. <i>Environmental Science & Environmental Science </i>	10.3	280
327	First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. <i>Environmental Science & Environmental & Environmental</i>	10.3	277
326	Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores. <i>ChemSusChem</i> , 2012 , 5, 2354-60	8.3	252
325	Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. <i>Environmental Science & Environmental </i>	10.3	248
324	Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. <i>Water Research</i> , 2008 , 42, 3089-97	12.5	232
323	BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance. <i>Catalysis Communications</i> , 2010 , 11, 460-464	3.2	226
322	MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 35-45	21.8	210
321	Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. <i>Journal of Hazardous Materials</i> , 2016 , 305, 156-163	12.8	202
320	Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry. <i>Water Research</i> , 2010 , 44, 5188-95	12.5	192
319	Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. <i>Applied Catalysis B: Environmental</i> , 2018 , 227, 114-122	21.8	183
318	Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 250-259	21.8	178

317	Sorption mechanisms of perfluorinated compounds on carbon nanotubes. <i>Environmental Pollution</i> , 2012 , 168, 138-44	9.3	167
316	Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. <i>ACS Applied Materials & Discounty (Communication)</i> , 5, 6937-	4 <mark>3</mark> .5	156
315	Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. <i>Journal of Hazardous Materials</i> , 2015 , 282, 150-7	12.8	150
314	Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. <i>Chemical Engineering Journal</i> , 2014 , 253, 46-54	14.7	149
313	Brominated flame retardants (BFRs): A review on environmental contamination in China. <i>Chemosphere</i> , 2016 , 150, 479-490	8.4	144
312	Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane. <i>Chemosphere</i> , 2008 , 71, 258-67	8.4	141
311	Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. <i>Water Research</i> , 2013 , 47, 4139-47	12.5	139
310	Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. <i>Chemosphere</i> , 2015 , 119, 1033-1039	8.4	138
309	Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy. <i>Catalysis Today</i> , 2010 , 153, 193-199	5.3	138
308	Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling. <i>Environmental Science & Environmental Science & En</i>	10.3	133
307	Degradation of perfluorinated compounds on a boron-doped diamond electrode. <i>Electrochimica Acta</i> , 2012 , 77, 17-22	6.7	127
306	Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal-Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments. <i>Environmental Science & Early Technology</i> , 2015 , 49, 8657-65	10.3	126
305	Degradation of Ofloxacin by Perylene Diimide Supramolecular Nanofiber Sunlight-Driven Photocatalysis. <i>Environmental Science & Environmental Science &</i>	10.3	125
304	Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. <i>Bioresource Technology</i> , 2011 , 102, 2265-71	11	119
303	Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. <i>Water Research</i> , 2014 , 63, 81-93	12.5	117
302	Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins. <i>Journal of Hazardous Materials</i> , 2015 , 286, 136-43	12.8	117
301	Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrence, chiral profiling and environmental risk. <i>Science of the Total Environment</i> , 2016 , 557-558, 268-75	10.2	112
300	Activated carbons and amine-modified materials for carbon dioxide capture has review. Frontiers of Environmental Science and Engineering, 2013, 7, 326-340	5.8	111

299	Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated sludge. <i>Chemosphere</i> , 2010 , 81, 453-8	8.4	108
298	Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies. <i>Environmental Science & Environmental Science & Environ</i>	- 1 80·3	107
297	Mechanochemical destruction of halogenated organic pollutants: A critical review. <i>Journal of Hazardous Materials</i> , 2016 , 313, 85-102	12.8	106
296	Degradation of indometacin by simulated sunlight activated CDs-loaded BiPO4 photocatalyst: Roles of oxidative species. <i>Applied Catalysis B: Environmental</i> , 2018 , 221, 129-139	21.8	103
295	Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O/HO), and an electro-peroxone process. <i>Water Research</i> , 2018 , 130, 127-138	12.5	102
294	Sorption of perfluorooctane sulfonate on organo-montmorillonites. <i>Chemosphere</i> , 2010 , 78, 688-94	8.4	100
293	Characterization of pharmaceutically active compounds in Beijing, China: Occurrence pattern, spatiotemporal distribution and its environmental implication. <i>Journal of Hazardous Materials</i> , 2017 , 323, 147-155	12.8	96
292	Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. <i>Water Research</i> , 2013 , 47, 2863-72	12.5	93
291	Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. <i>Adsorption</i> , 2015 , 21, 125-133	2.6	91
290	Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O, and an electro-peroxone process. <i>Water Research</i> , 2018 , 138, 106-117	12.5	90
289	Removal of pharmaceuticals from secondary effluents by an electro-peroxone process. <i>Water Research</i> , 2016 , 88, 826-835	12.5	90
288	Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework. <i>Chemical Engineering Journal</i> , 2017 , 330, 157-10	6 5 4.7	89
287	Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. <i>Water Research</i> , 2015 , 80, 20-9	12.5	83
286	Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor. <i>Journal of Hazardous Materials</i> , 2017 , 323, 99-108	12.8	81
285	Photocatalytic decomposition of 4-t-octylphenol over NaBiO3 driven by visible light: catalytic kinetics and corrosion products characterization. <i>Journal of Hazardous Materials</i> , 2010 , 173, 765-72	12.8	81
284	Decoration of TiO2/g-C3N4 Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin. <i>RSC Advances</i> , 2017 , 7, 34096-34103	3.7	80
283	Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust. <i>Environment International</i> , 2014 , 65, 100-6	12.9	80
282	Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil. <i>Chemosphere</i> , 2006 , 63, 228-35	8.4	79

(2018-2018)

281	Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water. <i>ACS Applied Materials & Discrete Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Discrete Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Discrete Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Discrete Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Discrete Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Discrete Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Discrete Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Discrete Flame Retardant from Water. ACS Applied Materials & Discrete Flame Retardant from Water. ACS Applied Materials & Discrete Flame Retardant from Water. ACS Applied Materials & Discrete Flame Flam</i>	9.5	78	
280	Identification of priority pharmaceuticals in the water environment of China. <i>Chemosphere</i> , 2012 , 89, 280-6	8.4	77	
279	Tiered aquatic ecological risk assessment of organochlorine pesticides and their mixture in Jiangsu reach of Huaihe River, China. <i>Environmental Monitoring and Assessment</i> , 2009 , 157, 29-42	3.1	77	
278	Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: Dechloridation, detoxicity, and a new superoxide radical model study. <i>Chemical Engineering Journal</i> , 2018 , 332, 737-748	14.7	76	
277	Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China. <i>Chemosphere</i> , 2016 , 150, 465-471	8.4	73	
276	Mechanochemical degradation of tetrabromobisphenol A: performance, products and pathway. Journal of Hazardous Materials, 2012 , 243, 278-85	12.8	72	
275	Competitive adsorption of perfluoroalkyl substances on anion exchange resins in simulated AFFF-impacted groundwater. <i>Chemical Engineering Journal</i> , 2018 , 348, 494-502	14.7	72	
274	Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge. <i>Chemosphere</i> , 2013 , 93, 1765-72	8.4	71	
273	A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. <i>Journal of Hazardous Materials</i> , 2018 , 359, 248-257	12.8	70	
272	Highly efficient sorption of perfluorooctane sulfonate and perfluorooctanoate on a quaternized cotton prepared by atom transfer radical polymerization. <i>Chemical Engineering Journal</i> , 2012 , 193-194, 154-160	14.7	70	
271	Synthesis of a carbon dots modified g-CN/SnO Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123257	12.8	69	
270	Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on activated carbons and resins. <i>Chemical Engineering Journal</i> , 2019 , 364, 132-138	14.7	67	
269	Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation. <i>Chemical Engineering Journal</i> , 2018 , 353, 490-498	14.7	67	
268	Highly active metal-free carbon dots/g-CN hollow porous nanospheres for solar-light-driven PPCPs remediation: Mechanism insights, kinetics and effects of natural water matrices. <i>Water Research</i> , 2020 , 172, 115492	12.5	67	
267	Photocatalytic degradation of clofibric acid by g-CN/P25 composites under simulated sunlight irradiation: The significant effects of reactive species. <i>Chemosphere</i> , 2017 , 172, 193-200	8.4	66	
266	Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process. <i>Water Research</i> , 2017 , 108, 373-382	12.5	66	
265	Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization. <i>Chemosphere</i> , 2013 , 91, 124-30	8.4	66	
264	Contaminants of emerging concern in landfill leachate in China: A review. <i>Emerging Contaminants</i> , 2018 , 4, 1-10	5.8	66	

263	Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 4634-42	5.1	65
262	Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: A comparative study. <i>Journal of Hazardous Materials</i> , 2017 , 323, 550-557	12.8	64
261	Emission inventory for PFOS in China: review of past methodologies and suggestions. <i>Scientific World Journal, The</i> , 2011 , 11, 1963-80	2.2	64
260	Contributors to estrogenic activity in wastewater from a large wastewater treatment plant in Beijing, China. <i>Environmental Toxicology and Pharmacology</i> , 2008 , 25, 20-6	5.8	64
259	The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects. <i>Chemosphere</i> , 2018 , 208, 640-654	8.4	62
258	Pay special attention to the transformation products of PPCPs in environment. <i>Emerging Contaminants</i> , 2017 , 3, 69-75	5.8	60
257	Municipal Solid Waste Landfills: An Underestimated Source of Pharmaceutical and Personal Care Products in the Water Environment. <i>Environmental Science & Environmental Scienc</i>	10.3	59
256	Occurrence of organophosphorus flame retardants on skin wipes: Insight into human exposure from dermal absorption. <i>Environment International</i> , 2017 , 98, 113-119	12.9	59
255	CO2 adsorption on crab shell derived activated carbons: contribution of micropores and nitrogen-containing groups. <i>RSC Advances</i> , 2015 , 5, 48323-48330	3.7	59
254	Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light. <i>Chemosphere</i> , 2016 , 150, 139-144	8.4	57
253	Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode. <i>Chemosphere</i> , 2007 , 67, 1361-7	8.4	57
252	Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination. <i>Water Research</i> , 2018 , 130, 322-332	12.5	56
251	Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode. <i>Journal of Hazardous Materials</i> , 2015 , 299, 417-24	12.8	55
250	One-step synthesis of phosphorus/oxygen co-doped g-CN/anatase TiO Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121634	12.8	55
249	Enantiospecific toxicity, distribution and bioaccumulation of chiral antidepressant venlafaxine and its metabolite in loach (Misgurnus anguillicaudatus) co-exposed to microplastic and the drugs. Journal of Hazardous Materials, 2019, 370, 203-211	12.8	54
248	The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process. <i>Water Research</i> , 2017 , 118, 26-38	12.5	52
247	Bimetallic Pd/Al particles for highly efficient hydrodechlorination of 2-chlorobiphenyl in acidic aqueous solution. <i>Journal of Hazardous Materials</i> , 2011 , 189, 76-83	12.8	52
246	Major pharmaceuticals and personal care products (PPCPs) in wastewater treatment plant and receiving water in Beijing, China, and associated ecological risks. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2014 , 92, 655-61	2.7	51

(2020-2015)

245	Electro-peroxone treatment of the antidepressant venlafaxine: Operational parameters and mechanism. <i>Journal of Hazardous Materials</i> , 2015 , 300, 298-306	12.8	50	
244	Typical pharmaceuticals in major WWTPs in Beijing, China: Occurrence, load pattern and calculation reliability. <i>Water Research</i> , 2018 , 140, 291-300	12.5	50	
243	Sorption behavior and mechanism of organophosphate flame retardants on activated carbons. <i>Chemical Engineering Journal</i> , 2018 , 332, 286-292	14.7	50	
242	Perchlorate formation during the electro-peroxone treatment of chloride-containing water: Effects of operational parameters and control strategies. <i>Water Research</i> , 2016 , 88, 691-702	12.5	50	
241	Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light. <i>Chemical Engineering Journal</i> , 2019 , 378, 122118	14.7	50	
240	Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents. <i>Environmental Science & Environmental & Environm</i>	10.3	50	
239	Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. <i>Water Research</i> , 2011 , 45, 1774-80	12.5	50	
238	Electrochemical mineralization of perfluorooctane sulfonate by novel F and Sb co-doped Ti/SnO2 electrode containing Sn-Sb interlayer. <i>Chemical Engineering Journal</i> , 2017 , 316, 296-304	14.7	49	
237	Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs. <i>Emerging Contaminants</i> , 2016 , 2, 145-147	5.8	49	
236	As(III) and As(V) adsorption on nanocomposite of hydrated zirconium oxide coated carbon nanotubes. <i>Journal of Colloid and Interface Science</i> , 2018 , 511, 277-284	9.3	48	
235	Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model. <i>Water Research</i> , 2018 , 142, 383-395	12.5	48	
234	Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution. <i>Journal of Hazardous Materials</i> , 2007 , 147, 746-51	12.8	48	
233	Luminescent mixed-crystal Ln-MOF thin film for the recognition and detection of pharmaceuticals. <i>Sensors and Actuators B: Chemical</i> , 2018 , 257, 931-935	8.5	48	
232	Development of species sensitivity distributions and estimation of HC(5) of organochlorine pesticides with five statistical approaches. <i>Ecotoxicology</i> , 2008 , 17, 716-24	2.9	47	
231	Ozonation of indomethacin: Kinetics, mechanisms and toxicity. <i>Journal of Hazardous Materials</i> , 2017 , 323, 460-470	12.8	46	
230	Selective and Fast Adsorption of Perfluorooctanesulfonate from Wastewater by Magnetic Fluorinated Vermiculite. <i>Environmental Science & Environmental </i>	10.3	45	
229	Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process. <i>Chemical Engineering Journal</i> , 2016 , 290, 405-413	14.7	45	
228	Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. <i>Water Research</i> , 2020 , 182, 115956	12.5	45	

227	Electro-peroxone degradation of diethyl phthalate: Cathode selection, operational parameters, and degradation mechanisms. <i>Journal of Hazardous Materials</i> , 2016 , 319, 61-8	12.8	44
226	Fate and removal of typical pharmaceutical and personal care products in a wastewater treatment plant from Beijing: a mass balance study. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 491-501	5.8	44
225	Adsorption behavior and mechanism of perfluorooctane sulfonate on nanosized inorganic oxides. Journal of Colloid and Interface Science, 2016 , 474, 199-205	9.3	44
224	Understanding the adsorption of sulfonamide antibiotics on MIL-53s: Metal dependence of breathing effect and adsorptive performance in aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 159-168	9.3	44
223	Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill. <i>Chemosphere</i> , 2013 , 90, 1729-35	8.4	43
222	Hydrophilic and strengthened 3D reduced graphene oxide/nano-Fe3O4 hybrid hydrogel for enhanced adsorption and catalytic oxidation of typical pharmaceuticals. <i>Environmental Science: Nano</i> , 2018 , 5, 1650-1660	7.1	43
221	How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis). <i>Environment International</i> , 2020 , 136, 105480	12.9	42
220	Rapid photocatalytic degradation of PCP-Na over NaBiO3 driven by visible light irradiation. <i>Journal of Hazardous Materials</i> , 2009 , 166, 728-33	12.8	42
219	Electrochemical Oxidation of Environmentally Persistent Perfluorooctane Sulfonate by a Novel Lead Dioxide Anode. <i>Electrochimica Acta</i> , 2016 , 213, 358-367	6.7	42
218	Wastewater-based epidemiology in Beijing, China: Prevalence of antibiotic use in flu season and association of pharmaceuticals and personal care products with socioeconomic characteristics. <i>Environment International</i> , 2019 , 125, 152-160	12.9	42
217	Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process. <i>Chemosphere</i> , 2019 , 235, 575-585	8.4	41
216	Identification of New Oxidation Products of Bezafibrate for Better Understanding of Its Toxicity Evolution and Oxidation Mechanisms during Ozonation. <i>Environmental Science & amp; Technology</i> , 2017 , 51, 2262-2270	10.3	40
215	Estimating the use of antibiotics for humans across China. <i>Chemosphere</i> , 2016 , 144, 1384-90	8.4	40
214	Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction. <i>Water Research</i> , 2019 , 163, 114907	12.5	40
213	Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 4276-85	5.1	40
212	Catalytic Hydrodechlorination of 4-Chlorophenol in an Aqueous Solution with Pd/Ni Catalyst and Formic Acid. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 4561-4565	3.9	40
211	Degradation of PFOA Substitute: GenX (HFPO-DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite?. <i>Environmental Science & Environmental Science & Env</i>	10.3	40
210	Selective and High Sorption of Perfluorooctanesulfonate and Perfluorooctanoate by Fluorinated Alkyl Chain Modified Montmorillonite. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16782-16790	3.8	38

209	A novel synthetic carbon and oxygen doped stalactite-like g-CN for broad-spectrum-driven indometacin degradation. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121961	12.8	38
208	Highly efficient removal of enrofloxacin by magnetic montmorillonite via adsorption and persulfate oxidation. <i>Chemical Engineering Journal</i> , 2019 , 360, 1119-1127	14.7	38
207	Regeneration of Chitosan-Based Adsorbents for Eliminating Dyes from Aqueous Solutions. <i>Separation and Purification Reviews</i> , 2019 , 48, 1-13	7.3	38
206	The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process. <i>Water Research</i> , 2019 , 157, 209-217	12.5	37
205	Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon. <i>Chemosphere</i> , 2019 , 224, 187-194	8.4	37
204	A photocatalytic degradation strategy of PPCPs by a heptazine-based CN organic polymer (OCN) under visible light. <i>Environmental Science: Nano</i> , 2018 , 5, 2325-2336	7.1	37
203	Pd/Al bimetallic nanoparticles for complete hydrodechlorination of 3-chlorophenol in aqueous solution. <i>Chemical Engineering Journal</i> , 2013 , 219, 492-498	14.7	37
202	Linking the environmental loads to the fate of PPCPs in Beijing: Considering both the treated and untreated wastewater sources. <i>Environmental Pollution</i> , 2015 , 202, 153-9	9.3	37
201	Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies. <i>Journal of Colloid and Interface Science</i> , 2021 , 590, 495-505	9.3	37
200	Removal of pharmaceuticals and personal care products (PPCPs) from water and wastewater using novel sulfonic acid (BO3H) functionalized covalent organic frameworks. <i>Environmental Science: Nano</i> , 2019 , 6, 3374-3387	7.1	37
199	Pharmaceuticals and personal care products (PPCPs) in urban and suburban rivers of Beijing, China: occurrence, source apportionment and potential ecological risk. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 445-55	4.3	36
198	Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	36
197	Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. <i>Chemosphere</i> , 2014 , 116, 40-5	8.4	36
196	Historical intake and elimination of polychlorinated biphenyls and organochlorine pesticides by the Australian population reconstructed from biomonitoring data. <i>Environment International</i> , 2015 , 74, 82-8	3 ^{12.9}	36
195	Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5-WO3/TiO2 catalyst. <i>Chemosphere</i> , 2012 , 87, 1032-8	8.4	36
194	Mechanochemical destruction of Chinese PFOS alternative F-53B. <i>Chemical Engineering Journal</i> , 2016 , 286, 387-393	14.7	35
193	Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production. <i>Environmental Science & Environmental Science & Env</i>	10.3	35
192	Per- and Polyfluoroalkyl Substances in Representative Fluorocarbon Surfactants Used in Chinese Film-Forming Foams: Levels, Profile Shift, and Environmental Implications. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 259-264	11	34

191	Highly efficient removal of hexavalent chromium from electroplating wastewater using aminated wheat straw. <i>RSC Advances</i> , 2016 , 6, 8797-8805	3.7	34
190	Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants. <i>Chemosphere</i> , 2017 , 184, 879-883	8.4	34
189	Insights into the synergetic mechanism of a combined vis-RGO/TiO/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products. <i>Chemosphere</i> , 2019 , 216, 341-351	8.4	34
188	PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: Occurrence, removal and risk assessment. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	33
187	Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents. <i>Frontiers of Environmental Science and Engineering in China</i> , 2009 , 3, 171-177		33
186	Removal of fluoride from water using titanium-based adsorbents. <i>Frontiers of Environmental Science and Engineering in China</i> , 2010 , 4, 414-420		33
185	Mechanochemical destruction of perfluorinated pollutants and mechanosynthesis of lanthanum oxyfluoride: A Waste-to-Materials process. <i>Chemical Engineering Journal</i> , 2017 , 316, 1078-1090	14.7	32
184	Seasonal and Particle Size-Dependent Variations of Hexabromocyclododecanes in Settled Dust: Implications for Sampling. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	32
183	Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 21467-21482	5.1	32
182	Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. <i>Chemical Engineering Journal</i> , 2016 , 294, 353-361	14.7	32
181	A sulfate radical based ferrousperoxydisulfate oxidative system for indomethacin degradation in aqueous solutions. <i>RSC Advances</i> , 2017 , 7, 22802-22809	3.7	31
180	Ultrathin AgWO-coated P-doped g-CN nanosheets with remarkable photocatalytic performance for indomethacin degradation. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122355	12.8	31
179	Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics. Waste Management, 2018 , 75, 181-186	8.6	31
178	Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem. <i>Journal of Hazardous Materials</i> , 2018 , 359, 104-112	12.8	31
177	A mini-review on mechanochemical treatment of contaminated soil: From laboratory to large-scale. <i>Critical Reviews in Environmental Science and Technology</i> , 2018 , 48, 723-771	11.1	31
176	Seasonal and spatial variations of pharmaceuticals and personal care products occurrence and human health risk in drinking water - A case study of China. <i>Science of the Total Environment</i> , 2019 , 694, 133711	10.2	31
175	Mechanochemical destruction of decabromodiphenyl ether into visible light photocatalyst BiOBr. <i>RSC Advances</i> , 2014 , 4, 14719-14724	3.7	31
174	Estimation of human exposure to halogenated flame retardants through dermal adsorption by skin wipe. <i>Chemosphere</i> , 2017 , 168, 272-278	8.4	31

(2020-2018)

173	Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary: Jiulong River Estuary, Fujian, China. <i>Science of the Total Environment</i> , 2018 , 639, 263-270	10.2	31
172	First assessment on degradability of sodium p-perfluorous nonenoxybenzene sulfonate (OBS), a high volume alternative to perfluorooctane sulfonate in fire-fighting foams and oil production agents in China. <i>RSC Advances</i> , 2017 , 7, 46948-46957	3.7	30
171	Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode. <i>Chemical Engineering Journal</i> , 2016 , 303, 384-390	14.7	30
170	Phototransformation of mefenamic acid induced by nitrite ions in water: mechanism, toxicity, and degradation pathways. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 12585-96	5.1	29
169	Estimation of Exposure to Organic Flame Retardants via Hand Wipe, Surface Wipe, and Dust: Comparability of Different Assessment Strategies. <i>Environmental Science & Environmental Science & Environme</i>	10.3	29
168	Quantitative structure-property relationship studies for direct photolysis rate constants and quantum yields of polybrominated diphenyl ethers in hexane and methanol. <i>Ecotoxicology and Environmental Safety</i> , 2009 , 72, 1587-93	7	29
167	The photocatalytic activity and stability of a nanosized TiO2 film prepared by carbon black modified method. <i>Catalysis Today</i> , 2004 , 90, 305-312	5.3	29
166	Emission of unintentionally produced persistent organic pollutants (UPOPs) from municipal waste incinerators in China. <i>Chemosphere</i> , 2016 , 158, 17-23	8.4	28
165	Bromate removal from water by polypyrrole tailored activated carbon. <i>Journal of Colloid and Interface Science</i> , 2016 , 467, 10-16	9.3	28
164	Synthesis and Regeneration of A MXene-Based Pollutant Adsorbent by Mechanochemical Methods. <i>Molecules</i> , 2019 , 24,	4.8	28
163	Decomplexation removal of Ni(II)-citrate complexes through heterogeneous Fenton-like process using novel CuO-CeO-CoO composite nanocatalyst. <i>Journal of Hazardous Materials</i> , 2019 , 374, 167-176	12.8	27
162	A primary estimate of global PCDD/F release based on the quantity and quality of national economic and social activities. <i>Chemosphere</i> , 2016 , 151, 303-9	8.4	27
161	Promoting effect of EDTA on catalytic activity of highly stable AlNi bimetal alloy for dechlorination of 2-chlorophenol. <i>Chemical Engineering Journal</i> , 2014 , 250, 222-229	14.7	27
160	Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. <i>Frontiers of Environmental Science and Engineering</i> , 2014 , 8, 62-68	5.8	27
159	Polychlorinated dibenzo-p-dioxins and dibenzofurans emissions from open burning of crop residues in China between 1997 and 2004. <i>Environmental Pollution</i> , 2008 , 151, 39-46	9.3	27
158	Electrochemical hydrodechlorination of 4-chlorobiphenyl in aqueous solution with the optimization of palladium-loaded cathode materials. <i>Electrochimica Acta</i> , 2006 , 52, 1075-1081	6.7	27
157	Adsorptive recovery of Au(III) from aqueous solution using crosslinked polyethyleneimine resins. <i>Chemosphere</i> , 2020 , 241, 125122	8.4	27
156	Efficient multiresidue determination method for 168 pharmaceuticals and metabolites: Optimization and application to raw wastewater, wastewater effluent, and surface water in Beijing, China. Environmental Pollution, 2020 , 261, 114113	9.3	27

155	Effects of zero-valent metals together with quartz sand on the mechanochemical destruction of dechlorane plus coground in a planetary ball mill. <i>Journal of Hazardous Materials</i> , 2014 , 264, 230-5	12.8	26
154	Polybrominated diphenyl ethers and novel brominated flame retardants in indoor dust of different microenvironments in Beijing, China. <i>Environment International</i> , 2019 , 122, 159-167	12.9	26
153	Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	26
152	Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China. <i>Environmental Pollution</i> , 2018 , 239, 473-482	9.3	25
151	Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling. <i>Scientific Reports</i> , 2016 , 6, 22925	4.9	24
150	Reductive degradation of chlorinated organic pollutants-contaminated water by bimetallic Pd/Al nanoparticles: Effect of acidic condition and surfactants. <i>Chemical Engineering Journal</i> , 2013 , 234, 346-3	35 ¹ 3 ¹ .7	24
149	Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 784-792	5.8	24
148	Simultaneous enantiomeric analysis of non-steroidal anti-inflammatory drugs in environment by chiral LC-MS/MS: A pilot study in Beijing, China. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 174, 83-9	1 7	24
147	Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. <i>Water Research</i> , 2020 , 183, 116115	12.5	23
146	In Situ Synthesis of Defect-Engineered MOFs as a Photoregenerable Catalytic Adsorbent: Understanding the Effect of LML, Adsorption Behavior, and Photoreaction Process. <i>ACS Applied Materials & Description</i> (12), 12706-12716	9.5	23
145	Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection. <i>Chemosphere</i> , 2018 , 203, 263-270	8.4	23
144	Adsorptive removal of organophosphate flame retardants from water by non-ionic resins. <i>Chemical Engineering Journal</i> , 2018 , 354, 105-112	14.7	23
143	The non-negligible environmental risk of recycling halogenated flame retardants associated with plastic regeneration in China. <i>Science of the Total Environment</i> , 2019 , 646, 1090-1096	10.2	23
142	Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: operating parameters and mechanism. <i>Journal of Environmental Sciences</i> , 2014 , 26, 1733-9	6.4	23
141	Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads. <i>Frontiers of Environmental Science and Engineering</i> , 2014 , 8, 675-682	5.8	23
140	Dual metal-free polymer reactive sites for the efficient degradation of diclofenac by visible light-driven oxygen reduction to superoxide radical and hydrogen peroxide. <i>Environmental Science:</i> Nano, 2019 , 6, 2577-2590	7.1	22
139	Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. <i>Environmental Pollution</i> , 2020 , 265, 114953	9.3	22
138	Defect-modified reduced graphitic carbon nitride (RCN) enhanced oxidation performance for photocatalytic degradation of diclofenac. <i>Chemosphere</i> , 2020 , 258, 127343	8.4	22

137	Addressing the environmental risk of persistent organic pollutants in China. <i>Frontiers of Environmental Science and Engineering</i> , 2012 , 6, 2-16	5.8	22
136	Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China. <i>Environment International</i> , 2020 , 135, 105404	12.9	22
135	Superhigh adsorption of perfluorooctane sulfonate on aminated polyacrylonitrile fibers with the assistance of air bubbles. <i>Chemical Engineering Journal</i> , 2017 , 315, 108-114	14.7	21
134	Screening for over 1000 organic micropollutants in surface water and sediments in the Liaohe River watershed. <i>Chemosphere</i> , 2015 , 138, 519-25	8.4	21
133	Enhanced adsorption of tetrabromobisphenol a (TBBPA) on cosmetic-derived plastic microbeads and combined effects on zebrafish. <i>Chemosphere</i> , 2020 , 248, 126067	8.4	21
132	Preparation of aminated cross-linked chitosan beads for efficient adsorption of hexavalent chromium. <i>International Journal of Biological Macromolecules</i> , 2019 , 139, 352-360	7.9	21
131	Determination of PCBs, PCDDs and PCDFs in insulating oil samples from stored Chinese electrical capacitors by HRGC/HRMS. <i>Chemosphere</i> , 2011 , 85, 239-46	8.4	21
130	The Pollution Status of Emerging Persistent Organic Pollutants in China. <i>Environmental Engineering Science</i> , 2010 , 27, 215-225	2	21
129	The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa. <i>Environmental Pollution</i> , 2020 , 263, 114593	9.3	21
128	Derivation of aquatic predicted no-effect concentration (PNEC) for ibuprofen and sulfamethoxazole based on various toxicity endpoints and the associated risks. <i>Chemosphere</i> , 2018 , 193, 223-229	8.4	21
127	Role of micropores and nitrogen-containing groups in CO 2 adsorption on indole-3-butyric acid potassium derived carbons. <i>Chemical Engineering Journal</i> , 2016 , 286, 98-105	14.7	20
126	Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	20
125	Coupling the dechlorination of aqueous 4-CP with the mechanochemical destruction of solid PCNB using Fe-Ni-SiO2. <i>Journal of Hazardous Materials</i> , 2013 , 250-251, 175-80	12.8	20
124	Influence of pesticides contamination on the emission of PCDD/PCDF to the land from open burning of corn straws. <i>Environmental Pollution</i> , 2011 , 159, 1744-8	9.3	20
123	Rapid determination of pharmaceuticals from multiple therapeutic classes in wastewater by solid-phase extraction and ultra-performance liquid chromatography tandem mass spectrometry. <i>Science Bulletin</i> , 2009 , 54, 4633-4643	10.6	20
122	Degradation of hexafluoropropylene oxide oligomer acids as PFOA alternatives in simulated nanofiltration concentrate: Effect of molecular structure. <i>Chemical Engineering Journal</i> , 2020 , 382, 122	86 6 .7	20
121	Occurrence and source apportionment of Per- and poly-fluorinated compounds (PFCs) in North Canal Basin, Beijing. <i>Scientific Reports</i> , 2016 , 6, 36683	4.9	20
120	Pay attention to non-wastewater emission pathways of pharmaceuticals into environments. <i>Chemosphere</i> , 2016 , 165, 515-518	8.4	20

119	Recovery of Ni(II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	20
118	Organophosphate flame retardants in leachates from six municipal landfills across China. <i>Chemosphere</i> , 2019 , 218, 836-844	8.4	20
117	Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. <i>International Journal of Biological Macromolecules</i> , 2020 , 148, 543-549	7.9	19
116	Mechanochemical mineralization of "very persistent" fluorocarbon surfactants - 6:2 fluorotelomer sulfonate (6:2FTS) as an example. <i>Scientific Reports</i> , 2017 , 7, 17180	4.9	19
115	Phosphate-modified m-BiO enhances the absorption and photocatalytic activities of sulfonamide: Mechanism, reactive species, and reactive sites. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121443	12.8	19
114	Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in	4.5	18
113	Pharmaceuticals and consumer products in four wastewater treatment plants in urban and suburb areas of Shanghai. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 6086-94	5.1	18
112	Unveiling formation mechanism of carcinogenic N-nitrosodimethylamine in ozonation of dimethylamine: a density functional theoretical investigation. <i>Journal of Hazardous Materials</i> , 2014 , 279, 330-5	12.8	18
111	Deriving acute and chronic predicted no effect concentrations of pharmaceuticals and personal care products based on species sensitivity distributions. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 144, 537-542	7	18
110	Elucidating ozonation mechanisms of organic micropollutants based on DFT calculations: Taking sulfamethoxazole as a case. <i>Environmental Pollution</i> , 2017 , 220, 971-980	9.3	18
109	Prediction of soot water partition coefficients for selected persistent organic pollutants from theoretical molecular descriptors. <i>Progress in Natural Science: Materials International</i> , 2008 , 18, 867-872	3.6	18
108	Efficient degradation of typical pharmaceuticals in water using a novel TiO/ONLH nano-photocatalyst under natural sunlight. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123582	12.8	18
107	Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition. <i>Chemosphere</i> , 2021 , 263, 128208	8.4	18
106	The degradation and persistence of five pharmaceuticals in an artificial climate incubator during a one year period. <i>RSC Advances</i> , 2017 , 7, 8280-8287	3.7	17
105	Mechanochemical remediation of PCB contaminated soil. <i>Chemosphere</i> , 2017 , 168, 333-340	8.4	17
104	Pharmaceutical compounds in aquatic environment in China: locally screening and environmental risk assessment. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 394-401	5.8	17
103	Mechanochemical conversion of brominated POPs into useful oxybromides: a greener approach. <i>Scientific Reports</i> , 2016 , 6, 28394	4.9	17
102	Enhanced adsorption of diclofenac sodium on the carbon nanotubes-polytetrafluorethylene electrode and subsequent degradation by electro-peroxone treatment. <i>Journal of Colloid and Interface Science</i> , 2017 , 488, 142-148	9.3	17

(2020-2020)

101	Determination of 27 pharmaceuticals and personal care products (PPCPs) in water: The benefit of isotope dilution. <i>Frontiers of Environmental Science and Engineering</i> , 2020 , 14, 1	5.8	17
100	Occurrence and discharge of pharmaceuticals and personal care products in dewatered sludge from WWTPs in Beijing and Shenzhen. <i>Emerging Contaminants</i> , 2016 , 2, 1-6	5.8	17
99	Adsorption of perfluorooctane sulfonate on carbon nanotubes: influence of pH and competitive ions. <i>Water Science and Technology</i> , 2014 , 69, 1489-95	2.2	16
98	A facile method for the highly efficient hydrodechlorination of 2-chlorophenol using Al N i alloy in the presence of fluorine ion. <i>Chemical Engineering Journal</i> , 2012 , 209, 79-85	14.7	16
97	Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 14294-306	5.1	16
96	Regeneration of PFOS loaded activated carbon by hot water and subsequent aeration enrichment of PFOS from eluent. <i>Carbon</i> , 2018 , 134, 199-206	10.4	15
95	Quantitative structure-activity relationship and prediction of mixture toxicity of alkanols. <i>Science Bulletin</i> , 2006 , 51, 2717-2723		15
94	Discharge inventory of pharmaceuticals and personal care products in Beijing, China. <i>Emerging Contaminants</i> , 2016 , 2, 148-156	5.8	15
93	Congener-specific analysis of polychlorinated naphthalenes (PCNs) in the major Chinese technical PCB formulation from a stored Chinese electrical capacitor. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 14471-7	5.1	14
92	Photodegradation of Dechlorane Plus in n-nonane under the irradiation of xenon lamp. <i>Journal of Hazardous Materials</i> , 2013 , 260, 16-23	12.8	14
91	Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation. <i>Water Research</i> , 2021 , 194, 116927	12.5	14
90	Surface Hardness Analysis of Aged Composite Insulators via Laser-Induced Plasma Spectra Characterization. <i>IEEE Transactions on Plasma Science</i> , 2019 , 47, 387-394	1.3	14
89	Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. <i>Chemical Engineering Journal</i> , 2021 , 412, 127509	14.7	14
88	Poly- and perfluoroalkyl substances in a drinking water treatment plant in the Yangtze River Delta of China: Temporal trend, removal and human health risk. <i>Science of the Total Environment</i> , 2019 , 696, 133949	10.2	13
87	Widespread monitoring of chiral pharmaceuticals in urban rivers reveals stereospecific occurrence and transformation. <i>Environment International</i> , 2020 , 138, 105657	12.9	13
86	Effective mineralization of anti-epilepsy drug carbamazepine in aqueous solution by simultaneously electro-generated H2O2/O3 process. <i>Electrochimica Acta</i> , 2018 , 290, 203-210	6.7	13
85	Unintentional formed PCDDs, PCDFs, and DL-PCBs as impurities in Chinese pentachloronitrobenzene products. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 14462-70	5.1	12
84	Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017. <i>Environmental Pollution</i> , 2020 , 264, 114753	9.3	12

83	Polycyclic musks in surface water and sediments from an urban catchment in the megacity Beijing, China. <i>Environmental Pollution</i> , 2020 , 263, 114548	9.3	12
82	Photocatalyst with a metal-free electronfiole pair double transfer mechanism for pharmaceutical and personal care product degradation. <i>Environmental Science: Nano</i> , 2019 , 6, 3292-3306	7.1	12
81	Screening of textile finishing agents available on the Chinese market: An important source of perand polyfluoroalkyl substances to the environment. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	12
80	Occurrence and distribution of chlorobenzenes in the Tonghui river of Beijing, China. <i>Archives of Environmental Contamination and Toxicology</i> , 2009 , 57, 32-41	3.2	12
79	Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate(VI) and zero-valent iron. <i>Environmental Pollution</i> , 2020 , 264, 114789	9.3	12
78	Nickel ion removal from aqueous solutions through the adsorption process: a review. <i>Reviews in Chemical Engineering</i> , 2019 ,	5	12
77	Effect of hydro-oleophobic perfluorocarbon chain on interfacial behavior and mechanism of perfluorooctane sulfonate in oil-water mixture. <i>Scientific Reports</i> , 2017 , 7, 44694	4.9	11
76	Identifying targets of potential concern by a screening level ecological risk assessment of human use pharmaceuticals in China. <i>Chemosphere</i> , 2020 , 246, 125818	8.4	11
75	Combination of ozonation and electrolysis process to enhance elimination of thirty structurally diverse pharmaceuticals in aqueous solution. <i>Journal of Hazardous Materials</i> , 2019 , 368, 281-291	12.8	10
74	Emission factors of unintentional HCB and PeCBz and their correlation with PCDD/PCDF. <i>Environmental Pollution</i> , 2017 , 230, 516-522	9.3	10
73	Effect of halide ions on the photodegradation of ibuprofen in aqueous environments. <i>Chemosphere</i> , 2017 , 166, 412-417	8.4	10
72	Determination of pharmaceuticals from various therapeutic classes in dewatered sludge by pressurized liquid extraction and high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS). <i>International Journal of Environmental Analytical Chemistry</i> , 2013 , 93, 115	1.8 5 9-117 3	10 3
71	Electrocatalytic Reductive Dechlorination of 2,4,5-PCB in Aqueous Solution by Palladium-Modified Titanium Mesh as the Cathode. <i>Acta Physico-chimica Sinica</i> , 2006 , 22, 306-311		10
70	Occurrence and variations of pharmaceuticals and personal-care products in rural water bodies: A case study of the Taige Canal (2018-2019). <i>Science of the Total Environment</i> , 2021 , 762, 143138	10.2	10
69	A Quick Classifying Method for Tracking and Erosion Resistance of HTV Silicone Rubber Material via Laser-Induced Breakdown Spectroscopy. <i>Sensors</i> , 2019 , 19,	3.8	9
68	Mechanochemical enhancement of the natural attenuation capacity of soils using two organophosphate biocides as models. <i>Journal of Hazardous Materials</i> , 2018 , 360, 71-81	12.8	9
67	Bioanalytical characterization of dioxin-like activity in sewage sludge from Beijing, China. <i>Chemosphere</i> , 2009 , 75, 649-653	8.4	9
66	Organic trace pollutants in the aquatic environmentregulatory and technical problem-solving approaches in Germany and China. <i>Water Science and Technology</i> , 2012 , 66, 942-52	2.2	9

65	Role of the air-water interface in removing perfluoroalkyl acids from drinking water by activated carbon treatment. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121981	12.8	9
64	Development of emission factors to estimate discharge of typical pharmaceuticals and personal care products from wastewater treatment plants. <i>Science of the Total Environment</i> , 2021 , 769, 144556	10.2	9
63	Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: A case study near Taihu Lake, China. <i>Science of the Total Environment</i> , 2021 , 782, 146826	10.2	9
62	Tailoring the properties of a zero-valent iron-based composite by mechanochemistry for nitrophenols degradation in wastewaters. <i>Environmental Technology (United Kingdom)</i> , 2017 , 38, 2916-2	32 7	8
61	Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways, and toxicity assessment. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 10786-10795	5.1	8
60	Rapid mechanochemical synthesis of VOx/TiO2 as highly active catalyst for HCB removal. <i>Chemosphere</i> , 2015 , 141, 197-204	8.4	8
59	Adsorption behavior and mechanism of Au(III) on caffeic acid functionalized viscose staple fibers. <i>Chemosphere</i> , 2020 , 253, 126704	8.4	8
58	Rainfall Influences Occurrence of Pharmaceutical and Personal Care Products in Landfill Leachates: Evidence from Seasonal Variations and Extreme Rainfall Episodes. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 4822-4830	10.3	8
57	Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology. <i>Chemosphere</i> , 2021 , 284, 131341	8.4	8
56	Photochemical transformation of CN under UV irradiation: Implications for environmental fate and photocatalytic activity. <i>Journal of Hazardous Materials</i> , 2020 , 394, 122557	12.8	7
55	Reassessment and update of emission factors for unintentional dioxin-like polychlorinated biphenyls. <i>Science of the Total Environment</i> , 2017 , 605-606, 498-506	10.2	6
54	Relationship between Oxidation Products and Estrogenic Activity during Ozonation of 4-Nonylphenol. <i>Ozone: Science and Engineering</i> , 2008 , 30, 120-126	2.4	6
53	Removal of Humic Acid Using PEI-Modified Fungal Biomass. <i>Separation Science and Technology</i> , 2006 , 41, 2989-3002	2.5	6
52	Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	6
51	Role of hydrogenated moiety in redox treatability of 6:2 fluorotelomer sulfonic acid in chrome mist suppressant solution. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124875	12.8	6
50	Seasonal occurrence and source analysis of pharmaceutically active compounds (PhACs) in aquatic environment in a small and medium-sized city, China. <i>Science of the Total Environment</i> , 2021 , 769, 14427	20.2	6
49	Preparation of magnetic powdered carbon/nano-FeO composite for efficient adsorption and degradation of trichloropropyl phosphate from water. <i>Journal of Hazardous Materials</i> , 2021 , 416, 12576	5 ^{12.8}	6
48	Pollution characterization of pharmaceutically active compounds (PhACs) in the northwest of Tai Lake Basin, China: Occurrence, temporal changes, riverine flux and risk assessment. <i>Journal of Hazardous Materials</i> 2022 422 126889	12.8	6

47	Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation?. <i>Water Research</i> , 2022 , 215, 118275	12.5	6
46	Catalytic decomposition of dioxins and other unintentional POPs in flue gas from a municipal waste incinerator (MWI) in China: a pilot testing. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 3179	9 ⁵ 3180	4 ⁵
45	Antibiotic resistance genes and mobile genetic elements in a rural river in Southeast China: Occurrence, seasonal variation and association with the antibiotics. <i>Science of the Total Environment</i> , 2021 , 778, 146131	10.2	5
44	Determination of total oxidizable precursors in foam surfactants and foam contaminated water based on UV-activated persulfate oxidation. <i>Science of the Total Environment</i> , 2021 , 763, 142943	10.2	5
43	Effects of coagulation-sedimentation-filtration pretreatment on micropollutant abatement by the electro-peroxone process. <i>Chemosphere</i> , 2021 , 266, 129230	8.4	5
42	The degradation of enrofloxacin by a non-metallic heptazine-based OCN polymer: Kinetics, mechanism and effect of water constituents. <i>Chemosphere</i> , 2021 , 273, 128435	8.4	5
41	Photodegradation mechanisms of acyclovir in water and the toxicity of photoproducts. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2019 , 320, 823-830	1.5	4
40	Effect of effluent organic matter on ozonation of bezafibrate. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 962-969	5.8	4
39	Optimization of the Electro-Peroxone Process for Micropollutant Abatement Using Chemical Kinetic Approaches. <i>Molecules</i> , 2019 , 24,	4.8	4
38	Detailed analysis of PCBs and PCDD/Fs impurities in a dielectric oil sample (ASKAREL Nr 1740) from an imported transformer in China. <i>Frontiers of Environmental Science and Engineering</i> , 2014 , 8, 195-204	5.8	4
37	Capacity estimation and preliminary strategy for reducing the release of dioxins in China. <i>Frontiers of Environmental Science and Engineering in China</i> , 2007 , 1, 13-17		4
36	Measurement of the free concentrations of alkyl phenols and bisphenol A to determine their biodegradation kinetics by activated sludge. <i>Science Bulletin</i> , 2007 , 52, 2766-2770		4
35	Self-assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac. <i>Chemical Engineering Journal</i> , 2021 , 431, 133927	14.7	4
34	Rapid Removal of Perfluoroalkanesulfonates from Water by Ecyclodextrin Covalent Organic Frameworks. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 48700-48708	9.5	4
33	A novel nitrogen-containing covalent organic framework adsorbent for the efficient removal of bisphenol A from aqueous solution. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 113, 204	4-52-313	4
32	Emerging Organic Contaminants in Chinese Surface Water: Identification of Priority Pollutants. <i>Engineering</i> , 2021 ,	9.7	4
31	Preliminary release inventories of unintentionally generated dl-PCB and HCB from sources in China: Base year 2015. <i>Chemosphere</i> , 2019 , 219, 875-881	8.4	4
30	Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2. Frontiers of Environmental Science and Engineering, 2019, 13, 1	5.8	4

29	Removal of HFPO-DA (GenX) from aqueous solutions: A mini-review. <i>Chemical Engineering Journal</i> , 2021 , 424, 130266	14.7	4
28	Determination of 41 polybrominated diphenyl ethers in soil using a pressurised solvent extraction and GC-NCI-MS method. <i>International Journal of Environmental Analytical Chemistry</i> , 2011 , 91, 1135-11.	50 ^{1.8}	3
27	Occurrence, spatiotemporal distribution, seasonal and annual variation, and source apportionment of poly- and perfluoroalkyl substances (PFASs) in the northwest of Tai Lake Basin, China. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125784	12.8	3
26	Contribution of Nanobubbles for PFAS Adsorption on Graphene and OH- and NH-Functionalized Graphene: Comparing Simulations with Experimental Results. <i>Environmental Science & Environmental Science & </i>	10.3	3
25	Degradation of OBS (Sodium -Perfluorous Nonenoxybenzenesulfonate) as a Novel Per- and Polyfluoroalkyl Substance by UV/Persulfate and UV/Sulfite: Fluorinated Intermediates and Treatability in Fluoroprotein Foam <i>Environmental Science & Environmental Science & Environme</i>	10.3	2
24	Is Disposal of Unused Pharmaceuticals as Municipal Solid Waste by Landfilling a Good Option? A Case Study in China. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 105, 784-789	2.7	2
23	Removal of lead ions by two FeMn oxide substrate adsorbents. <i>Science of the Total Environment</i> , 2021 , 773, 145670	10.2	2
22	Predicting gas chromatography relative retention times for polychlorinated biphenyls using chlorine substitution pattern contribution method. <i>Journal of Chromatography A</i> , 2016 , 1427, 161-9	4.5	2
21	One-step synthesis of carbon nitride nanobelts for the enhanced photocatalytic degradation of organic pollutants through peroxydisulfate activation. <i>Environmental Science: Nano</i> , 2021 , 8, 245-257	7.1	2
20	Co-occurrence of antiseptic triclocarban and chiral anti-inflammatory ibuprofen in environment: Association between biological effect in sediment and risk to human health. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124871	12.8	2
19	Mechanochemically oxidized chitosan-based adsorbents with outstanding Penicillin G adsorption capacity. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105454	6.8	2
18	Regenerable magnetic octahedral layer catalyst for gaseous UPOPs removal. <i>Journal of Hazardous Materials</i> , 2014 , 280, 627-35	12.8	1
17	Did the CP audits promote the enterprisesQCP? A case study in Beijing. <i>Scientific World Journal, The</i> , 2002 , 2, 649-54	2.2	1
16	Carbon isotopic fractionation during photolysis of hexachlorobenzene. <i>Progress in Natural Science: Materials International</i> , 2005 , 15, 82-88	3.6	1
15	Using a fugacity model to determine the degradation rate of typical polycyclic musks in the field: A case study in the North Canal River watershed of Beijing, China. <i>Journal of Environmental Management</i> , 2022 , 302, 114096	7.9	1
14	Quantitatively identifying the emission sources of pharmaceutically active compounds (PhACs) in the surface water: Method development, verification and application in Huangpu River, China <i>Science of the Total Environment</i> , 2022 , 815, 152783	10.2	1
13	Synchronous construction of a porous intramolecular D-A conjugated polymer via electron donors for superior photocatalytic decontamination. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127379	12.8	1
12	Identifying unknown antibiotics with persistent and bioaccumulative properties and ecological risk in river water in Beijing, China. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 13515-13523	5.1	Ο

11	Improved fractal kinetic model to predict mechanochemical destruction rate of organic pollutants. <i>Chemosphere</i> , 2021 , 284, 131307	8.4	0
10	Emerging contaminant control: From science to action. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	О
9	Activation of peracetic acid via CoO with double-layered hollow structures for the highly efficient removal of sulfonamides: Kinetics insights and assessment of practical applications <i>Journal of Hazardous Materials</i> , 2022 , 431, 128579	12.8	O
8	Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective <i>Science of the Total Environment</i> , 2022 , 153992	10.2	О
7	Determination of total reducible organofluorine in PFAS-impacted aqueous samples based on hydrated electron defluorination <i>Science of the Total Environment</i> , 2022 , 154548	10.2	О
6	Directional utilization disorder charge via In-plane driving force of functionalized graphite carbon nitride for the robust photocatalytic degradation of fluoroquinolone. <i>Chemical Engineering Journal</i> , 2022 , 442, 135943	14.7	Ο
5	Construction of dual transfer channels in graphitic carbon nitride photocatalyst for high-efficiency environmental pollution remediation: Enhanced exciton dissociation and carrier migration. <i>Journal of Hazardous Materials</i> , 2022 , 436, 129171	12.8	0
4	Enhancing hydroxyl radical production from cathodic ozone reduction during the ozone-electrolysis process with flow-through reactive electrochemical membrane cathode. <i>Chemosphere</i> , 2022 , 303, 1350	028.4	O

- Source apportionment and photolysis process identification of selected POPs by CSIA. *Diqiu Huaxue* , **2006**, 25, 184-184
- Occurrence and behavior of chlorobenzenes at multiple environment from a chemical industry zone in Beijing, China. *Diqiu Huaxue*, **2006**, 25, 189-189
- Development of polar organic pollutant integrated sampler (POPIS) for trace EDCs in water. *Diqiu Huaxue*, **2006**, 25, 205-205