

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6288582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences (Switzerland), 2020, 10, 3092.	1.3	250
2	An overview of climate change impacts on European viticulture. Food and Energy Security, 2012, 1, 94-110.	2.0	221
3	Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 2016, 22, 3774-3788.	4.2	186
4	Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 2010, 43, 163-177.	0.4	148
5	Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. International Journal of Biometeorology, 2013, 57, 909-925.	1.3	132
6	European temperature responses to blocking and ridge regional patterns. Climate Dynamics, 2018, 50, 457-477.	1.7	131
7	Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy, 2021, 11, 56.	1.3	108
8	Weather regimes and their connection to the winter rainfall in Portugal. International Journal of Climatology, 2005, 25, 33-50.	1.5	106
9	Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. International Journal of Biometeorology, 2011, 55, 119-131.	1.3	99
10	Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Climate Research, 2012, 51, 89-103.	0.4	98
11	Viticultural irrigation demands under climate change scenarios in Portugal. Agricultural Water Management, 2018, 196, 66-74.	2.4	97
12	Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. Journal of Agricultural Science, 2016, 154, 795-811.	0.6	93
13	Spatial patterns and regimes of daily precipitation in Iran in relation to largeâ€scale atmospheric circulation. International Journal of Climatology, 2012, 32, 1226-1237.	1.5	88
14	Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology, 2016, 36, 1-12.	1.5	87
15	Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Climatic Change, 2019, 152, 179-193.	1.7	79
16	Temperature extremes in Europe: overview of their driving atmospheric patterns. Natural Hazards and Earth System Sciences, 2012, 12, 1671-1691.	1.5	77
17	Climate change scenarios for precipitation extremes in Portugal. Theoretical and Applied Climatology, 2012, 108, 217-234.	1.3	77
18	Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2141-2157.	1.3	77

#	Article	IF	CITATIONS
19	Understanding climate change projections for precipitation over western Europe with a weather typing approach. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1170-1189.	1.2	76
20	Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Regional Environmental Change, 2014, 14, 295-306.	1.4	75
21	Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions. PLoS ONE, 2014, 9, e108078.	1.1	65
22	Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Climatic Change, 2019, 154, 159-178.	1.7	63
23	Are the Winters 2010 and 2012 Archetypes Exhibiting Extreme Opposite Behavior of the North Atlantic Jet Stream?*. Monthly Weather Review, 2013, 141, 3626-3640.	0.5	59
24	Modelling the impact of climate extremes: an overview of the MICE project. Climatic Change, 2007, 81, 163-177.	1.7	58
25	Climate factors driving wine production in the Portuguese Minho region. Agricultural and Forest Meteorology, 2014, 185, 26-36.	1.9	58
26	Viticulture in Portugal: A review of recent trends and climate change projections. Oeno One, 2017, 51, 61-69.	0.7	57
27	European winter precipitation extremes and large-scale circulation: a coupled model and its scenarios. Theoretical and Applied Climatology, 2007, 87, 85-102.	1.3	56
28	Grapevine Phenology of cv. Touriga Franca and Touriga Nacional in the Douro Wine Region: Modelling and Climate Change Projections. Agronomy, 2019, 9, 210.	1.3	55
29	Climate change projections for olive yields in the Mediterranean Basin. International Journal of Climatology, 2020, 40, 769-781.	1.5	55
30	Ensemble projections for wine production in the Douro Valley of Portugal. Climatic Change, 2013, 117, 211-225.	1.7	51
31	What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Applied Sciences (Switzerland), 2020, 10, 3030.	1.3	47
32	Atmospheric large-scale dynamics during the 2004/2005 winter drought in portugal. International Journal of Climatology, 2007, 27, 571-586.	1.5	46
33	Dynamical Evolution of North Atlantic Ridges and Poleward Jet Stream Displacements. Journals of the Atmospheric Sciences, 2011, 68, 954-963.	0.6	46
34	Climate change impacts on thermal growing conditions of main fruit species in Portugal. Climatic Change, 2017, 140, 273-286.	1.7	46
35	Climate change multiâ€model projections for temperature extremes in Portugal. Atmospheric Science Letters, 2014, 15, 149-156.	0.8	45
36	Modeling Phenology, Water Status, and Yield Components of Three Portuguese Grapevines Using the STICS Crop Model. American Journal of Enology and Viticulture, 2015, 66, 482-491.	0.9	45

#	Article	IF	CITATIONS
37	Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Australian Journal of Grape and Wine Research, 2017, 23, 296-304.	1.0	42
38	Assessment of irrigated maize yield response to climate change scenarios in Portugal. Agricultural Water Management, 2017, 184, 178-190.	2.4	40
39	Recent and future changes of precipitation extremes in mainland Portugal. Theoretical and Applied Climatology, 2019, 137, 1305-1319.	1.3	40
40	Atmospheric circulation types and winter daily precipitation in Iran. International Journal of Climatology, 2013, 33, 2232-2246.	1.5	39
41	Large-scale atmospheric dynamics of the wet winter 2009–2010 and its impact on hydrology in Portugal. Climate Research, 2011, 46, 29-41.	0.4	39
42	Implications of future bioclimatic shifts on Portuguese forests. Regional Environmental Change, 2017, 17, 117-127.	1.4	38
43	Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. European Journal of Remote Sensing, 2014, 47, 753-771.	1.7	37
44	Regionalization and susceptibility assessment to daily precipitation extremes in mainland Portugal. Applied Geography, 2017, 86, 128-138.	1.7	37
45	<i>Thymus pulegioides</i> L. as a rich source of antioxidant, anti-proliferative and neuroprotective phenolic compounds. Food and Function, 2018, 9, 3617-3629.	2.1	37
46	Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal. Agricultural Systems, 2018, 164, 107-115.	3.2	36
47	On the development of strong ridge episodes over the eastern North Atlantic. Geophysical Research Letters, 2009, 36, .	1.5	35
48	Projected changes in wind energy potentials over Iberia. Renewable Energy, 2015, 75, 68-80.	4.3	34
49	Predicting hydrologic flows under climate change: The Tâmega Basin as an analog for the Mediterranean region. Science of the Total Environment, 2019, 668, 1013-1024.	3.9	34
50	Thymus zygis subsp. zygis an Endemic Portuguese Plant: Phytochemical Profiling, Antioxidant, Anti-Proliferative and Anti-Inflammatory Activities. Antioxidants, 2020, 9, 482.	2.2	34
51	Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chemistry, 2020, 331, 127362.	4.2	34
52	Temperature extremes in Europe and wintertime large-scale atmospheric circulation: HadCM3 future scenarios. Climate Research, 2006, 31, 3-18.	0.4	33
53	Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal. Agricultural Systems, 2020, 182, 102844.	3.2	30
54	Chemical Characterization and Bioactivity of Extracts from Thymus mastichina: A Thymus with a Distinct Salvianolic Acid Composition. Antioxidants, 2020, 9, 34.	2.2	30

J A SANTOS

#	Article	IF	CITATIONS
55	Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agricultural Water Management, 2020, 237, 106193.	2.4	30
56	Influence of Climate Change on Chestnut Trees: A Review. Plants, 2021, 10, 1463.	1.6	30
57	The role of largeâ€scale eddies in the occurrence of winter precipitation deficits in Portugal. International Journal of Climatology, 2009, 29, 1493-1507.	1.5	28
58	High-Resolution Temperature Datasets in Portugal from a Geostatistical Approach: Variability and Extremes. Journal of Applied Meteorology and Climatology, 2018, 57, 627-644.	0.6	27
59	Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. Oeno One, 2016, 47, 287.	0.7	26
60	Assessment of large-scale wind resource features in Algeria. Energy, 2019, 189, 116299.	4.5	25
61	The Interplay between Atmospheric Conditions and Grape Berry Quality Parameters in Portugal. Applied Sciences (Switzerland), 2020, 10, 4943.	1.3	25
62	Grapevine Phenology in Four Portuguese Wine Regions: Modeling and Predictions. Applied Sciences (Switzerland), 2020, 10, 3708.	1.3	25
63	Climate Projections for Precipitation and Temperature Indicators in the Douro Wine Region: The Importance of Bias Correction. Agronomy, 2021, 11, 990.	1.3	25
64	Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions. Agricultural Water Management, 2022, 261, 107349.	2.4	25
65	Bioclimatic conditions of the Portuguese wine denominations of origin under changing climates. International Journal of Climatology, 2020, 40, 927-941.	1.5	23
66	Assessment of Climate Change Impacts on Chilling and Forcing for the Main Fresh Fruit Regions in Portugal. Frontiers in Plant Science, 2021, 12, 689121.	1.7	23
67	Integrating ecosystem services into sustainable landscape management: A collaborative approach. Science of the Total Environment, 2021, 794, 148538.	3.9	23
68	Cloud-to-ground lightning in Portugal: patterns and dynamical forcing. Natural Hazards and Earth System Sciences, 2012, 12, 639-649.	1.5	22
69	Relationship between daily atmospheric circulation types and winter dry/wet spells in western Iran. International Journal of Climatology, 2012, 32, 1056-1068.	1.5	22
70	Forcing factors of cloud-to-ground lightning over Iberia: regional-scale assessments. Natural Hazards and Earth System Sciences, 2013, 13, 1745-1758.	1.5	21
71	A predictive modelling tool for assessing climate, land use and hydrological change on reservoir physicochemical and biological properties. Area, 2012, 44, 432-442.	1.0	20
72	Phenological Model Intercomparison for Estimating Grapevine Budbreak Date (Vitis vinifera L.) in Europe. Applied Sciences (Switzerland), 2020, 10, 3800.	1.3	20

#	Article	IF	CITATIONS
73	Historical damaging flood records for 1871–2011 in Northern Portugal and underlying atmospheric forcings. Journal of Hydrology, 2015, 530, 591-603.	2.3	19
74	Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 67, 26032.	0.8	18
75	New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates. Theoretical and Applied Climatology, 2019, 135, 1215-1226.	1.3	18
76	Climatic extremes in Portugal in the 1780s based on documentary and instrumental records. Climate Research, 2015, 66, 141-159.	0.4	18
77	Multivariate clustering of viticultural terroirs in the Douro winemaking region. Ciencia E Tecnica Vitivinicola, 2017, 32, 142-153.	0.3	17
78	Long-term variability of the temperature time series recorded in Lisbon. Journal of Applied Statistics, 2009, 36, 323-337.	0.6	16
79	Application of crop modelling to portuguese viticulture: implementation and added-values for strategic planning. Ciencia E Tecnica Vitivinicola, 2015, 30, 29-42.	0.3	16
80	Damaging flood severity assessment in Northern Portugal over more than 150Âyears (1865–2016). Natural Hazards, 2018, 91, 983-1002.	1.6	16
81	Climate Change Projections of Aridity Conditions in the Iberian Peninsula. Water (Switzerland), 2021, 13, 2035.	1.2	16
82	Hydrological and flood hazard assessment using a coupled modelling approach for a mountainous catchment in Portugal. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2165-2177.	1.9	15
83	Atmospheric driving mechanisms of flash floods in Portugal. International Journal of Climatology, 2017, 37, 671-680.	1.5	14
84	Climate change and forest plagues: the case of the pine. Forest Systems, 2011, 20, 508.	0.1	14
85	Climate regulation ecosystem services and biodiversity conservation are enhanced differently by climate- and fire-smart landscape management. Environmental Research Letters, 2022, 17, 054014.	2.2	14
86	A comprehensive analysis of hail events in Portugal: Climatology and consistency with atmospheric circulation. International Journal of Climatology, 2019, 39, 188-205.	1.5	13
87	Fire from the Sky in the Anthropocene. Fire, 2021, 4, 13.	1.2	13
88	On the development of a regional climate change adaptation plan: Integrating model-assisted projections and stakeholders' perceptions. Science of the Total Environment, 2022, 805, 150320.	3.9	13
89	Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal. Atmospheric Research, 2013, 132-133, 46-64.	1.8	12
90	Calibration and multi-source consistency analysis of reconstructed precipitation series in Portugal since the early 17th century. Holocene, 2015, 25, 663-676.	0.9	12

#	Article	IF	CITATIONS
91	A persistent wintertime fog episode at Lisbon airport (Portugal): performance of <scp>ECMWF</scp> and <scp>AROME</scp> models. Meteorological Applications, 2016, 23, 353-370.	0.9	12
92	Performance of seasonal forecasts of Douro and Port wine production. Agricultural and Forest Meteorology, 2020, 291, 108095.	1.9	12
93	Modelling climate change impacts on early and late harvest grassland systems in Portugal. Crop and Pasture Science, 2018, 69, 821.	0.7	12
94	Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain). Climatic Change, 2022, 173, .	1.7	12
95	Robust inferences on climate change patterns of precipitation extremes in the Iberian Peninsula. Physics and Chemistry of the Earth, 2016, 94, 114-126.	1.2	11
96	Climate Change Projections for Bioclimatic Distribution of Castanea sativa in Portugal. Agronomy, 2022, 12, 1137.	1.3	10
97	Influence of meteorological conditions on RSV infection in Portugal. International Journal of Biometeorology, 2016, 60, 1807-1817.	1.3	9
98	Potential of oak tree-ring chronologies from Southern Portugal for climate reconstructions. Dendrochronologia, 2015, 35, 4-13.	1.0	8
99	Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy, 2022, 12, 350.	1.3	8
100	A new very high-resolution climatological dataset in Portugal: Application to hydrological modeling in a mountainous watershed. Physics and Chemistry of the Earth, 2019, 109, 2-8.	1.2	7
101	Future Changes in Rice Bioclimatic Growing Conditions in Portugal. Agronomy, 2019, 9, 674.	1.3	7
102	Future Projections for Wind, Wind Shear and Helicity in the Iberian Peninsula. Atmosphere, 2020, 11, 1001.	1.0	7
103	International trade, non-tariff measures and climate change: insights from Port wine exports. Journal of Economic Studies, 2021, 48, 1228-1243.	1.0	7
104	Simultaneous Calibration of Grapevine Phenology and Yield with a Soil–Plant–Atmosphere System Model Using the Frequentist Method. Agronomy, 2021, 11, 1659.	1.3	7
105	Use of Sentinel-2 Derived Vegetation Indices for Estimating fPAR in Olive Groves. Agronomy, 2022, 12, 1540.	1.3	7
106	FUTURE SCENARIOS FOR VITICULTURAL CLIMATIC ZONING IN IBERIA. Acta Horticulturae, 2012, , 55-61.	0.1	6
107	Assessment of Growing Thermal Conditions of Main Fruit Species in Portugal Based on Hourly Records from a Weather Station Network. Applied Sciences (Switzerland), 2019, 9, 3782.	1.3	6
108	Short-term adaptation of European viticulture to climate change: an overview from the H2020 Clim4Vitis action. IVES Technical Reviews Vine and Wine, 0, , .	0.0	6

#	Article	IF	CITATIONS
109	Long-term adaptation of European viticulture to climate change: an overview from the H2020 Clim4Vitis action. IVES Technical Reviews Vine and Wine, 0, , .	0.0	6
110	Projections of Climate Change Impacts on Flowering-Veraison Water Deficits for Riesling and MA1⁄4ller-Thurgau in Germany. Remote Sensing, 2022, 14, 1519.	1.8	6
111	New insights into the reconstructed temperature in Portugal over the last 400 years. Climate of the Past, 2015, 11, 825-834.	1.3	5
112	Current and Future Ecological Status Assessment: A New Holistic Approach for Watershed Management. Water (Switzerland), 2020, 12, 2839.	1.2	5
113	Climate Change Projections of Dry and Wet Events in Iberia Based on the WASP-Index. Climate, 2021, 9, 94.	1.2	5
114	Temperature-Based Grapevine Ripeness Modeling for cv. Touriga Nacional and Encruzado in the Dão Wine Region, Portugal. Agronomy, 2021, 11, 1777.	1.3	5
115	Viticulture in Portugal: A review of recent trends and climate change projections. Oeno One, 2017, 51, 61.	0.7	5
116	European Grapevine Moth and Vitis vinifera L. Phenology in the Douro Region: (A)synchrony and Climate Scenarios. Agronomy, 2022, 12, 98.	1.3	5
117	Correction: Freitas et al. Influence of Climate Change on Chestnut Trees: A Review. Plants 2021, 10, 1463. Plants, 2022, 11, 1518.	1.6	5
118	Enhanced Yield and Physiological Performance of Mediterranean Grapevines through Foliar Kaolin Spray. Procedia Environmental Sciences, 2015, 29, 247-248.	1.3	4
119	Modelling the Terroir of the Douro Demarcated Region, Portugal. E3S Web of Conferences, 2018, 50, 02009.	0.2	4
120	Air-Traffic Restrictions at the Madeira International Airport Due to Adverse Winds: Links to Synoptic-Scale Patterns and Orographic Effects. Atmosphere, 2020, 11, 1257.	1.0	4
121	Climatic variables and ecological modelling data for birds, amphibians and reptiles in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain). Biodiversity Data Journal, 2021, 9, e66509.	0.4	4
122	Climate change impacts on phenology and ripening of cv. Touriga Nacional in the Dão wine region, Portugal. International Journal of Climatology, 2022, 42, 7117-7132.	1.5	4
123	Climate change projections for precipitation in Portugal. AIP Conference Proceedings, 2013, , .	0.3	3
124	Grapevines Growing Under Future RCP Scenarios in Europe. Procedia Environmental Sciences, 2015, 29, 20.	1.3	3
125	European grapevine moth in the Douro region: voltinism and climatic scenarios. Oeno One, 2021, 55, 335-351.	0.7	3
126	Are Land Use Options in Viticulture and Oliviculture in Agreement with Bioclimatic Shifts in Portugal?. Land, 2021, 10, 869.	1.2	3

#	Article	IF	CITATIONS
127	Modelling the phenological development of cv. Touriga Nacional and Encruzado in the Dão Wine Region, Portugal. Oeno One, 2021, 55, 337-352.	0.7	3
128	Grapevine Sugar Concentration Model (GSCM): A Decision Support Tool for the Douro Superior Winemaking Region. Agronomy, 2022, 12, 1404.	1.3	3
129	Tackling climate change impacts on biodiversity towards integrative conservation in Atlantic landscapes. Global Ecology and Conservation, 2022, 38, e02216.	1.0	3
130	The Empirical Forcing Function as a tool for the diagnosis of large-scale atmospheric anomalies. Annales Geophysicae, 2010, 28, 75-87.	0.6	2
131	Grapevine Sugar Concentration Model (Gscm): A Standalone Tool for the Portuguese Douro Superior Wine Subregion. SSRN Electronic Journal, 0, , .	0.4	2
132	Sub-Hourly Precipitation Extremes in Mainland Portugal and Their Driving Mechanisms. Climate, 2022, 10, 28.	1.2	2
133	Climate change impacts on thermal growing conditions of Portuguese grapevine varieties. E3S Web of Conferences, 2018, 50, 01030.	0.2	1
134	Perceptions of Public Officers Towards the Effects of Climate Change on Ecosystem Services: A Case-Study From Northern Portugal. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	1
135	Climate-driven variability in vegetation greenness over Portugal. Climate Research, 2018, 76, 95-113.	0.4	1
136	The Impact of a Hydroelectric Power Plant on a Regional Climate in Portugal. Atmosphere, 2021, 12, 1400.	1.0	1
137	Agricultural Water Security under Climate Change in the Iberian Peninsula. Water (Switzerland), 2022, 14, 768.	1.2	1
138	CCA Diagnosis of the Large-scale Patterns Associated to a Climate Temperature Index in Europe. , 2011, ,		0
139	Statistical coupling between winter cold days / warm nights in Europe and the underlying atmospheric flow. , 2012, , .		0
140	THE CHANGING CLIMATE: USING MODELING TO PREDICT POTENTIAL EFFECTS ON HORTICULTURAL CROPS. Acta Horticulturae, 2012, , 89-94.	0.1	0
141	3rd International Conference on Ecohydrology, Soil and Climate Change, EcoHCC'14. Physics and Chemistry of the Earth, 2016, 94, 1.	1.2	0
142	Preface "2nd International Conference on Ecohydrology and Climate Change". Natural Hazards and Earth System Sciences, 2013, 13, 1853-1856.	1.5	0