Roger Gläser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6288087/publications.pdf

Version: 2024-02-01

85 papers 2,565 citations

28 h-index 206112 48 g-index

90 all docs 90 docs citations

90 times ranked 3677 citing authors

#	Article	IF	CITATIONS
1	Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. ChemCatChem, 2017, 9, 17-29.	3.7	304
2	The Role of Mesopores in Intracrystalline Transport in USY Zeolite:Â PFG NMR Diffusion Study on Various Length Scales. Journal of the American Chemical Society, 2005, 127, 13055-13059.	13.7	211
3	Molecular basket sorbents polyethylenimine–SBA-15 for CO2 capture from flue gas: Characterization and sorption properties. Microporous and Mesoporous Materials, 2013, 169, 103-111.	4.4	152
4	Chitosan-Based N-Doped Carbon Materials for Electrocatalytic and Photocatalytic Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 4708-4727.	6.7	123
5	A Microporous Copper Metal–Organic Framework with High H ₂ and CO ₂ Adsorption Capacity at Ambient Pressure. Angewandte Chemie - International Edition, 2011, 50, 10344-10348.	13.8	106
6	Effect of zeolite topology on NH3-SCR activity and stability of Cu-exchanged zeolites. Applied Catalysis B: Environmental, 2021, 284, 119752.	20.2	77
7	Assessment of hydrogen storage by physisorption in porous materials. Energy and Environmental Science, 2012, 5, 8294.	30.8	75
8	Highly efficient nano-sized TS-1 with micro-/mesoporosity from desilication and recrystallization for the epoxidation of biodiesel with H ₂ O ₂ . Green Chemistry, 2015, 17, 3378-3389.	9.0	71
9	Microimaging of Transient Concentration Profiles of Reactant and Product Molecules during Catalytic Conversion in Nanoporous Materials. Angewandte Chemie - International Edition, 2015, 54, 5060-5064.	13.8	62
10	Solâ€Gel and Porous Glassâ€Based Silica Monoliths with Hierarchical Pore Structure for Solidâ€Liquid Catalysis. Chemie-Ingenieur-Technik, 2016, 88, 1561-1585.	0.8	56
11	A novel copper-based MOF material: Synthesis, characterization and adsorption studies. Microporous and Mesoporous Materials, 2011, 142, 62-69.	4.4	53
12	Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Topics in Current Chemistry, 2018, 376, 20.	5 . 8	53
13	Selective Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran by Visible Lightâ€Driven Photocatalysis over In Situ Substrateâ€Sensitized Titania. ChemSusChem, 2021, 14, 1351-1362.	6.8	53
14	Dry reforming of methane with carbon dioxide over NiO–MgO–ZrO 2. Catalysis Today, 2016, 270, 68-75.	4.4	48
15	Surface barriers as dominant mechanism to transport limitations in hierarchically structured catalysts $\hat{a} \in ``Application to the zeolite-catalyzed alkylation of benzene with ethylene. Chemical Engineering Journal, 2017, 329, 45-55.$	12.7	47
16	Aqueous-Phase Hydrogenation of Levulinic Acid Using Formic Acid as a Sustainable Reducing Agent Over Pt Catalysts Supported on Mesoporous Zirconia. ACS Sustainable Chemistry and Engineering, 2020, 8, 393-402.	6.7	47
17	Synthesis, Characterization and Catalytic Properties of the Novel Manganese-Containing Amorphous Mesoporous Material MnTUD-1. Journal of Physical Chemistry C, 2008, 112, 7468-7476.	3.1	46
18	Current State of the Art of the Solid Rh-Based Catalyzed Hydroformylation of Short-Chain Olefins. Catalysts, 2020, 10, 510.	3 . 5	46

#	Article	IF	CITATIONS
19	Insights into the selective hydrogenation of levulinic acid to \hat{I}^3 -valerolactone using supported monoand bimetallic catalysts. Journal of Molecular Catalysis A, 2016, 417, 145-152.	4.8	42
20	Platinum Group Metal Phosphides as Heterogeneous Catalysts for the Gas-Phase Hydroformylation of Small Olefins. ACS Catalysis, 2017, 7, 3584-3590.	11.2	40
21	Accessibility enhancement of TS-1-based catalysts for improving the epoxidation of plant oil-derived substrates. Catalysis Science and Technology, 2016, 6, 7280-7288.	4.1	39
22	Suppression of N ₂ O formation by H ₂ O and SO ₂ in the selective catalytic reduction of NO with NH ₃ over a Mn/Ti–Si catalyst. Catalysis Science and Technology, 2019, 9, 4759-4770.	4.1	37
23	Selective oxidation of cyclooctene over copper-containing metal-organic frameworks. Microporous and Mesoporous Materials, 2015, 216, 151-160.	4.4	36
24	Pentanoic acid from \hat{l}^3 -valerolactone and formic acid using bifunctional catalysis. Green Chemistry, 2020, 22, 1171-1181.	9.0	33
25	Epoxidation of biodiesel with hydrogen peroxide over Ti-containing silicate catalysts. Microporous and Mesoporous Materials, 2012, 164, 182-189.	4.4	32
26	Network Flexibility: Control of Gate Opening in an Isostructural Series of Ag-MOFs by Linker Substitution. Inorganic Chemistry, 2014, 53, 7599-7607.	4.0	32
27	The role of acid/base properties in Ni/MgO-ZrO2–based catalysts for dry reforming of methane. Catalysis Communications, 2017, 100, 76-80.	3.3	30
28	Paddle Wheel Based Triazolyl Isophthalate MOFs: Impact of Linker Modification on Crystal Structure and Gas Sorption Properties. Inorganic Chemistry, 2016, 55, 3030-3039.	4.0	29
29	Effects of SiO2-doping on high-surface-area Ru/TiO2 catalysts for the selective CO methanation. Applied Catalysis B: Environmental, 2021, 282, 119483.	20.2	27
30	The Mechanism of Pseudomorphic Transformation of Spherical Silica Gel into MCM-41 Studied by PFG NMR Diffusometry. Materials, 2013, 6, 3688-3709.	2.9	26
31	Porosity and Structure of Hierarchically Porous Ni/Al2O3 Catalysts for CO2 Methanation. Catalysts, 2020, 10, 1471.	3.5	25
32	Effects of Enhanced Flexibility and Pore Size Distribution on Adsorption-Induced Deformation of Mesoporous Materials. Langmuir, 2018, 34, 7575-7584.	3.5	23
33	Nanosized Cu-SSZ-13 and Its Application in NH3-SCR. Catalysts, 2020, 10, 506.	3.5	23
34	Continuous Separation of Light Olefin/Paraffin Mixtures on ZIF-4 by Pressure Swing Adsorption and Membrane Permeation. Molecules, 2018, 23, 889.	3.8	21
35	Selective catalytic reduction of NOx with NH3 over Mn–Zr–Ti mixed oxide catalysts. Journal of Materials Science, 2019, 54, 6943-6960.	3.7	21
36	Photocatalytic Oxidation of NO over Composites of Titanium Dioxide and Zeolite ZSM-5. Catalysts, 2016, 6, 31.	3.5	20

#	Article	IF	CITATIONS
37	Determination of micropore volume and external surface of zeolites. Microporous and Mesoporous Materials, 2016, 236, 63-70.	4.4	19
38	Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Metals, 2022, 41, 166-178.	7.1	19
39	Oneâ€Shot Measurement of Effectiveness Factors of Chemical Conversion in Porous Catalysts. ChemCatChem, 2018, 10, 5602-5609.	3.7	17
40	Metal–Organic Framework Breathing in the Electric Field: A Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 10333-10338.	3.1	17
41	Bis(carboxyphenyl)-1,2,4-triazole Based Metal–Organic Frameworks: Impact of Metal Ion Substitution on Adsorption Performance. Inorganic Chemistry, 2016, 55, 6938-6948.	4.0	16
42	Improving mass-transfer in controlled pore glasses as supports for the platinum-catalyzed aromatics hydrogenation. Catalysis Science and Technology, 2015, 5, 3137-3146.	4.1	15
43	Nitric Oxide Reduction of Heavy-Duty Diesel Off-Gas by NH3-SCR in Front of the Turbocharger. Emission Control Science and Technology, 2017, 3, 275-288.	1.5	15
44	Hierarchically Structured Porous Spinels via an Epoxide-Mediated Sol–Gel Process Accompanied by Polymerization-Induced Phase Separation. ACS Omega, 2018, 3, 1201-1212.	3.5	14
45	Enhanced activity of a bifunctional Pt/zeolite Y catalyst with an intracrystalline hierarchical pore system in the aqueous-phase hydrogenation of levulinic acid. Chemical Engineering Journal, 2022, 430, 132763.	12.7	14
46	Digitization in Catalysis Research: Towards a Holistic Description of a Ni/Al ₂ O ₃ Reference Catalyst for CO ₂ Methanation. ChemCatChem, 2022, 14, .	3.7	14
47	Effect of Textural Properties and Presence of Co-Cation on NH3-SCR Activity of Cu-Exchanged ZSM-5. Catalysts, 2021, 11, 843.	3.5	13
48	Hard Xâ€Ray Nanotomography for 3D Analysis of Coking in Nickelâ€Based Catalysts. Angewandte Chemie - International Edition, 2021, 60, 21772-21777.	13.8	13
49	Evolution of Hierarchically Porous Nickel Alumina Catalysts Studied by Xâ€Ray Ptychography. Advanced Science, 2022, 9, e2105432.	11.2	13
50	A series of isomorphous Metal-Organic Frameworks with rtl topology – Metal distribution and tunable sorption capacity via substitution of metal ions. Microporous and Mesoporous Materials, 2015, 216, 56-63.	4.4	12
51	Mechanochemical preparation of advanced catalytically active bifunctional Pd-containing nanomaterials for aqueous phase hydrogenation. Catalysis Science and Technology, 2015, 5, 2085-2091.	4.1	12
52	A Series of Robust Copper-Based Triazolyl Isophthalate MOFs: Impact of Linker Functionalization on Gas Sorption and Catalytic Activity â€. Materials, 2017, 10, 338.	2.9	11
53	Radiation-Induced Graft Immobilization (RIGI): Covalent Binding of Non-Vinyl Compounds on Polymer Membranes. Polymers, 2021, 13, 1849.	4.5	10
54	Tuning the catalytic activity of the heteronuclear coordination polymers [CoxZn1â°'x(tdc)(bipy)] and [CoxZn1â°'x(Me2trzâ€"pba)2] in the epoxidation of cyclooctene via isomorphous substitution. Catalysis Communications, 2014, 44, 46-49.	3.3	9

#	Article	IF	Citations
55	Diffusion of methyl oleate in hierarchical micro-/mesoporous TS-1-based catalysts probed by PFG NMR spectroscopy. RSC Advances, 2018, 8, 38941-38944.	3.6	9
56	Mayenite-based electride C12A7eâ^: an innovative synthetic method via plasma arc melting. Materials Chemistry Frontiers, 2021, 5, 1301-1314.	5.9	9
57	Improving the hydrothermal stability of zeolite Y by La ³⁺ cation exchange as a catalyst for the aqueous-phase hydrogenation of levulinic acid. RSC Advances, 2021, 11, 5568-5579.	3.6	9
58	Promotion effect of niobium on ceria catalyst for selective catalytic reduction of NO with NH3. Journal of Rare Earths, 2022, 40, 1535-1545.	4.8	9
59	Influence of Framework <i>n</i> (Si)/ <i>n</i> (Al) Ratio on the Nature of Cu Species in Cuâ€ZSMâ€5 for NH ₃ â€6CRâ€DeNO _{<i>x</i>} . ChemCatChem, 2022, 14, .	3.7	9
60	Stability of a highly dealuminated Y-zeolite in liquid aqueous media. Microporous and Mesoporous Materials, 2019, 281, 148-160.	4.4	7
61	Titania/chitosan–lignin nanocomposite as an efficient photocatalyst for the selective oxidation of benzyl alcohol under UV and visible light. RSC Advances, 2021, 11, 34996-35010.	3.6	7
62	Micro-/mesoporous copper-containing zeolite Y applied in NH3-SCR, DeNO. Microporous and Mesoporous Materials, 2022, 334, 111793.	4.4	7
63	Application of microimaging to diffusion studies in nanoporous materials. Adsorption, 2021, 27, 819-840.	3.0	6
64	Highly Efficient One-Step Protein Immobilization on Polymer Membranes Supported by Response Surface Methodology. Frontiers in Chemistry, 2021, 9, 804698.	3.6	6
65	Mayenite-Based Electride C12A7eâ^: A Reactivity and Stability Study. Catalysts, 2021, 11, 334.	3.5	5
66	Diffusion in Nanoporous Solids in the Focus of IUPAC – A Tribute to Jens Weitkamp. Chemie-Ingenieur-Technik, 2021, 93, 893-901.	0.8	5
67	Flow MAS NMR for In Situ Monitoring of Carbon Dioxide Capture and Hydrogenation Using Nanoporous Solids. Journal of Physical Chemistry C, 2021, 125, 10219-10225.	3.1	5
68	Figures of Merit for Photocatalysis: Comparison of NiO/La-NaTaO3 and Synechocystis sp. PCC 6803 as a Semiconductor and a Bio-Photocatalyst for Water Splitting. Catalysts, 2021, 11, 1415.	3.5	5
69	Synthesis of TS-1 from supported embryonic to nano-/micro-metersized crystalline particles: The impact of accessibility of Ti species on the catalytic performance. Microporous and Mesoporous Materials, 2022, 337, 111900.	4.4	5
70	Nature and Surface Interactions of Sulfur-Containing Deposits on V2O5-WO3/TiO2 Catalysts for SCR-DeNOx. Emission Control Science and Technology, 2019, 5, 297-306.	1.5	4
71	Experimental Evaluation of a New Approach for a Two-Stage Hydrothermal Biomass Liquefaction Process. Energies, 2020, 13, 3692.	3.1	3
72	Selective Hydrogenation of Glycolic Acid to Renewable Ethylene Glycol over Supported Ruthenium Catalysts. ChemCatChem, 0, , .	3.7	3

#	Article	IF	CITATIONS
73	Tar induced deactivation and regeneration of a commercial V2O5-MoO3/TiO2 catalyst during selective catalytic reduction of NO with NH3. Fuel, 2022, 316, 123324.	6.4	3
74	Synthetic Routes to Crystalline Complex Metal Alkyl Carbonates and Hydroxycarbonates via Sol–Gel Chemistry—Perspectives for Advanced Materials in Catalysis. Catalysts, 2022, 12, 554.	3.5	3
75	Reagent-Free Immobilization of Industrial Lipases to Develop Lipolytic Membranes with Self-Cleaning Surfaces. Membranes, 2022, 12, 599.	3.0	3
76	Ru/Câ \in Catalyzed Hydrogenation of Aqueous Glycolic Acid from Microalgae â \in " Influence of pH and Biologically Relevant Additives. ChemistryOpen, 2022, 11, .	1.9	3
77	One-Shot Measurement of Effectiveness Factors of Chemical Conversion in Porous Catalysts. ChemCatChem, 2018, 10, 5553-5553.	3.7	2
78	Novel Polymer–Silica Composite-Based Bifunctional Catalysts for Hydrodeoxygenation of 4-(2-Furyl)-3-Buten-2-One as Model Substance for Furfural–Acetone Aldol Condensation Products. Applied Sciences (Switzerland), 2019, 9, 2438.	2.5	2
79	Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides. Beilstein Journal of Nanotechnology, 2019, 10, 2039-2061.	2.8	2
80	Hydrocarbon Sorption in Flexible MOFsâ€"Part I: Thermodynamic Analysis with the Dubinin-Based Universal Adsorption Theory (D-UAT). Nanomaterials, 2022, 12, 2415.	4.1	2
81	Catalytic Activity Towards Hydrogen Evolution Dependent of the Degree of Conjugation and Absorption of Six Organic Chromophores. ChemistryOpen, 2020, 9, 405-408.	1.9	1
82	An integrated resource-efficient microfluidic device for parallelised studies of immobilised chiral catalysts in continuous flow <i>via</i> miniaturized LC/MS-analysis. Reaction Chemistry and Engineering, 0, , .	3.7	1
83	Harte Röntgenâ€Nanotomographie zur 3Dâ€Analyse der Verkokung in Nickelâ€basierten Katalysatoren. Angewandte Chemie, 2021, 133, 21940-21945.	2.0	0
84	Monolithic Al2O3 Xerogels with Hierarchical Mesoâ€∤Macropore System as Catalyst Supports for Methanation of CO2. ChemCatChem, 0, , .	3.7	0
85	Thermally stable mesoporous tetragonal zirconia through surfactant-controlled synthesis and Si-stabilization. RSC Advances, 2022, 12, 16875-16885.	3.6	O