
Victoria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6287706/publications.pdf Version: 2024-02-01

VICTORIA

#	Article	IF	CITATIONS
1	General Working Principles of CH ₃ NH ₃ PbX ₃ Perovskite Solar Cells. Nano Letters, 2014, 14, 888-893.	4.5	786
2	Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications, 2013, 4, 2242.	5.8	760
3	Modeling High-Efficiency Quantum Dot Sensitized Solar Cells. ACS Nano, 2010, 4, 5783-5790.	7.3	615
4	Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. Journal of Physical Chemistry Letters, 2014, 5, 2357-2363.	2.1	609
5	Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1628-1635.	2.1	384
6	Label-free optical biosensing with slot-waveguides. Optics Letters, 2008, 33, 708.	1.7	201
7	Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. Journal of Materials Chemistry A, 2014, 2, 12754-12760.	5.2	174
8	A Sulfide/Polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 20156-20159.	6.6	153
9	High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation. Physical Chemistry Chemical Physics, 2013, 15, 13835.	1.3	143
10	Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process. Journal of Physical Chemistry Letters, 2011, 2, 3032-3035.	2.1	139
11	Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf〕 Journal of Physical Chemistry Letters, 2013, 4, 141-146.	2.1	101
12	Photoanodes Based on Nanostructured WO ₃ for Water Splitting. ChemPhysChem, 2012, 13, 3025-3034.	1.0	99
13	Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1519-1525.	2.1	96
14	Temperature Effects on the Photovoltaic Performance of Planar Structure Perovskite Solar Cells. Chemistry Letters, 2015, 44, 1557-1559.	0.7	83
15	Colloidal PbS and PbSeS Quantum Dot Sensitized Solar Cells Prepared by Electrophoretic Deposition. Journal of Physical Chemistry C, 2012, 116, 16391-16397.	1.5	81
16	Porphyrin Dyes with High Injection and Low Recombination for Highly Efficient Mesoscopic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 10898-10902.	1.5	79
17	Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 3414.	15.6	75
18	Enhanced Carrier Transport Distance in Colloidal PbS Quantum-Dot-Based Solar Cells Using ZnO Nanowires. Journal of Physical Chemistry C, 2015, 119, 27265-27274.	1.5	65

Victoria

#	Article	IF	CITATIONS
19	Recovery of Shallow Charge-Trapping Defects in CsPbX ₃ Nanocrystals through Specific Binding and Encapsulation with Amino-Functionalized Silanes. ACS Energy Letters, 2018, 3, 1409-1414.	8.8	60
20	Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. Nature Communications, 2013, 4, 2272.	5.8	56
21	Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors. Biosensors and Bioelectronics, 2010, 25, 1460-1466.	5.3	48
22	Interfacial engineering of quantum dot-sensitized TiO2 fibrous electrodes for futuristic photoanodes in photovoltaic applications. Journal of Materials Chemistry, 2012, 22, 14228.	6.7	32
23	Synergistic Interaction of Dyes and Semiconductor Quantum Dots for Advanced Cascade Cosensitized Solar Cells. Advanced Functional Materials, 2015, 25, 3220-3226.	7.8	28
24	Panchromatic Solar-to-H ₂ Conversion by a Hybrid Quantum Dots–Dye Dual Absorber Tandem Device. Journal of Physical Chemistry C, 2014, 118, 891-895.	1.5	27
25	Efficient passivated phthalocyanine-quantum dot solar cells. Chemical Communications, 2015, 51, 1732-1735.	2.2	26
26	Monodispersed CsPb ₂ Br ₅ @SiO ₂ Core–Shell Nanoparticles as Luminescent Labels for Biosensing. ACS Applied Nano Materials, 2021, 4, 2011-2018.	2.4	22
27	Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulfide based ionic liquid for enhanced long term stability. Electrochimica Acta, 2013, 100, 35-43.	2.6	20
28	PMMA Isocyanate-Modified Digital Discs as a Support for Oligonucleotide-Based Assays. Bioconjugate Chemistry, 2007, 18, 1408-1414.	1.8	18
29	Effect of the bridge substitution on the efficiency of dye-sensitized solar cells. Tetrahedron Letters, 2012, 53, 6665-6669.	0.7	8
30	Impedance spectroscopic analysis of high-performance dye sensitized solar cells based on nano-clay electrolytes. Electrochimica Acta, 2016, 197, 77-83.	2.6	8
31	Nanoparticle Bragg reflectors: A smart analytical tool for biosensing. Biosensors and Bioelectronics: X, 2019, 1, 100012.	0.9	6
32	Influenza A virus infection diagnosis based on DVD reader technology. Analytical Methods, 2012, 4, 3133.	1.3	4
33	Using combined photoreflectance and photoluminescence for understanding optical transitions in perovskites. , 2015, , .		2