Alexander Aranyosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6287667/publications.pdf

Version: 2024-02-01

394421 2,032 31 19 citations h-index papers

g-index 31 31 31 2477 docs citations times ranked citing authors all docs

580821

25

#	Article	IF	Citations
1	Sweating Rate and Sweat Chloride Concentration of Elite Male Basketball Players Measured With a Wearable Microfluidic Device Versus the Standard Absorbent Patch Method. International Journal of Sport Nutrition and Exercise Metabolism, 2022, 32, 342-349.	2.1	4
2	Skinâ€Interfaced Microfluidic System with Machine Learningâ€Enabled Image Processing of Sweat Biomarkers in Remote Settings. Advanced Materials Technologies, 2022, 7, .	5.8	20
3	Rapid Capture and Extraction of Sweat for Regional Rate and Cytokine Composition Analysis Using a Wearable Soft Microfluidic System. Journal of Investigative Dermatology, 2021, 141, 433-437.e3.	0.7	17
4	Skinâ€Interfaced Microfluidic Systems that Combine Hard and Soft Materials for Demanding Applications in Sweat Capture and Analysis. Advanced Healthcare Materials, 2021, 10, e2000722.	7.6	40
5	Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Science Translational Medicine, 2021, 13, .	12.4	65
6	Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. Lab on A Chip, 2020, 20, 84-92.	6.0	67
7	Soft Wearable Systems for Colorimetric and Electrochemical Analysis of Biofluids. Advanced Functional Materials, 2020, 30, 1907269.	14.9	92
8	Skin-interfaced soft microfluidic systems with modular and reusable electronics for <i>in situ</i> capacitive sensing of sweat loss, rate and conductivity. Lab on A Chip, 2020, 20, 4391-4403.	6.0	23
9	Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27906-27915.	7.1	84
10	Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Science Advances, 2020, 6, .	10.3	110
11	Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sensors, 2019, 4, 379-388.	7.8	239
12	Soft, skin-interfaced wearable systems for sports science and analytics. Current Opinion in Biomedical Engineering, 2019, 9, 47-56.	3.4	84
13	Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Science Advances, 2019, 5, eaav3294.	10.3	497
14	Tunable Nanostructured Coating for the Capture and Selective Release of Viable Circulating Tumor Cells. Advanced Materials, 2015, 27, 1593-1599.	21.0	144
15	Microfluidic mazes to characterize T-cell exploration patterns following activation in vitro. Integrative Biology (United Kingdom), 2015, 7, 1423-1431.	1.3	18
16	A neutrophil treadmill to decouple spatial and temporal signals during chemotaxis. Lab on A Chip, 2015, 15, 549-556.	6.0	15
17	Epithelial cell guidance by self-generated EGF gradients. Integrative Biology (United Kingdom), 2012, 4, 259.	1.3	79

Stiffness vs Damping in the Cochlea: A Negative Conclusion?. , 2011, , .

#	Article	IF	Citations
19	Tectorial Membrane Traveling Waves Underlie Impaired Hearing in Tectb Mutant Mice. , 2011, , .		O
20	Tectorial membrane travelling waves underlie abnormal hearing in Tectb mutant mice. Nature Communications, 2010, 1, 96.	12.8	79
21	Tectorial Membrane Material Properties in Tecta1870/+ Heterozygous Mice. Biophysical Journal, 2010, 99, 3274-3281.	0.5	18
22	Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integrative Biology (United Kingdom), 2010, 2, 639.	1.3	85
23	Col11a2 Deletion Reveals the Molecular Basis for Tectorial Membrane Mechanical Anisotropy. Biophysical Journal, 2009, 96, 4717-4724.	0.5	20
24	TRAVELING WAVES… ON THE TECTORIAL MEMBRANE. , 2009, , .		1
25	TECTORIAL MEMBRANE TRAVELING WAVES: A NEW MECHANISM FOR LONGITUDINAL COUPLING. , 2009, , .		1
26	Frequency-Dependent Shear Impedance of the Tectorial Membrane. Biophysical Journal, 2008, 95, 2529-2538.	0.5	32
27	Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16510-16515.	7.1	155
28	A 'TWIN-ENGINE' MODEL OF LEVEL-DEPENDENT COCHLEAR MOTION. , 2006, , .		3
29	Two modes of motion of the alligator lizard cochlea: Measurements and model predictions. Journal of the Acoustical Society of America, 2005, 118, 1585-1592.	1.1	8
30	Sound-Induced Motions of Individual Cochlear Hair Bundles. Biophysical Journal, 2004, 87, 3536-3546.	0.5	30
31	MEASURED AND MODELED MOTION OF FREE-STANDING HAIR BUNDLES IN RESPONSE TO SOUND STIMULATION. , 2003, , .		1