List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6287663/publications.pdf Version: 2024-02-01

		950	2381
478	47,701	115	198
papers	citations	h-index	g-index
492 all docs	492 docs citations	492 times ranked	47846 citing authors

KANALEONIC

#	Article	IF	CITATIONS
1	Biomedical applications of polymer-composite materials: a review. Composites Science and Technology, 2001, 61, 1189-1224.	3.8	1,260
2	Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 2008, 17, 467-479.	1.0	1,208
3	Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release, 2001, 70, 399-421.	4.8	1,140
4	RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nature Methods, 2013, 10, 973-976.	9.0	1,105
5	Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 1999, 5, 387-391.	15.2	1,072
6	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
7	Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews, 2013, 65, 104-120.	6.6	839
8	3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Advanced Materials, 2015, 27, 4035-4040.	11.1	720
9	Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Experimental Cell Research, 2007, 313, 1820-1829.	1.2	702
10	Multifunctional nanorods for gene delivery. Nature Materials, 2003, 2, 668-671.	13.3	700
11	Natural polymers for gene delivery and tissue engineeringâ~†. Advanced Drug Delivery Reviews, 2006, 58, 487-499.	6.6	631
12	Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 2010, 31, 1299-1306.	5.7	618
13	Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials, 2005, 26, 5405-5413.	5.7	592
14	Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules, 2005, 6, 2017-2024.	2.6	527
15	DNA-polycation nanospheres as non-viral gene delivery vehicles. Journal of Controlled Release, 1998, 53, 183-193.	4.8	494
16	Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. Journal of Biomedical Materials Research Part B, 1985, 19, 941-955.	3.0	486
17	Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews, 2009, 61, 1043-1054.	6.6	474
18	The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials, 2008, 29, 653-661.	5.7	467

#	Article	IF	CITATIONS
19	In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials, 2008, 29, 587-596.	5.7	457
20	CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chemical Reviews, 2017, 117, 9874-9906.	23.0	418
21	Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials, 2006, 27, 4132-4140.	5.7	415
22	Controlled release of heparin from poly(Îμ-caprolactone) electrospun fibers. Biomaterials, 2006, 27, 2042-2050.	5.7	404
23	Simultaneous Delivery of siRNA and Paclitaxel <i>via</i> a "Two-in-One―Micelleplex Promotes Synergistic Tumor Suppression. ACS Nano, 2011, 5, 1483-1494.	7.3	387
24	Advanced drug delivery systems and artificial skin grafts for skin wound healing. Advanced Drug Delivery Reviews, 2019, 146, 209-239.	6.6	369
25	Chitosan nanoparticles for oral drug and gene delivery. International Journal of Nanomedicine, 2006, 1, 117-128.	3.3	350
26	Polyethylenimine-Grafted Multiwalled Carbon Nanotubes for Secure Noncovalent Immobilization and Efficient Delivery of DNA. Angewandte Chemie - International Edition, 2005, 44, 4782-4785.	7.2	346
27	Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Advanced Functional Materials, 2007, 17, 1288-1296.	7.8	332
28	The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials, 2004, 25, 5293-5301.	5.7	324
29	Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials, 2010, 31, 3479-3491.	5.7	324
30	Polyphosphoesters in drug and gene delivery. Advanced Drug Delivery Reviews, 2003, 55, 483-499.	6.6	289
31	Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials, 2006, 27, 6043-6051.	5.7	263
32	Biomaterials Approach to Expand and Direct Differentiation of Stem Cells. Molecular Therapy, 2007, 15, 467-480.	3.7	263
33	Significance of synthetic nanostructures in dictating cellular response. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 10-21.	1.7	262
34	Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials, 2005, 26, 2537-2547.	5.7	261
35	A Novel Biodegradable Gene Carrier Based on Polyphosphoester. Journal of the American Chemical Society, 2001, 123, 9480-9481.	6.6	258
36	PEI-g-chitosan, a Novel Gene Delivery System with Transfection Efficiency Comparable to Polyethylenimine in Vitro and after Liver Administration in Vivo. Bioconjugate Chemistry, 2006, 17, 152-158.	1.8	256

#	Article	IF	CITATIONS
37	Fabrication of Controlled Release Biodegradable Foams by Phase Separation. Tissue Engineering, 1995, 1, 15-28.	4.9	250
38	Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and ?-cyclodextrin. Journal of Biomedical Materials Research Part B, 2003, 65A, 196-202.	3.0	249
39	The Role of Electrospinning in the Emerging Field of Nanomedicine. Current Pharmaceutical Design, 2006, 12, 4751-4770.	0.9	249
40	Quantum dot-based theranostics. Nanoscale, 2010, 2, 60-68.	2.8	240
41	Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. Journal of Biomedical Materials Research Part B, 1986, 20, 51-64.	3.0	236
42	Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19172-19177.	3.3	234
43	Bioinspired Diselenideâ€Bridged Mesoporous Silica Nanoparticles for Dualâ€Responsive Protein Delivery. Advanced Materials, 2018, 30, e1801198.	11.1	234
44	Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials, 2006, 27, 406-418.	5.7	228
45	Aptamer Nanomedicine for Cancer Therapeutics: Barriers and Potential for Translation. ACS Nano, 2015, 9, 2235-2254.	7.3	228
46	A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860.	23.3	228
47	In vitro and in vivo models for the study of oral delivery of nanoparticles. Advanced Drug Delivery Reviews, 2013, 65, 800-810.	6.6	226
48	Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4903-4908.	3.3	223
49	Preparation and Characterization of Polypseudorotaxanes Based on Block-Selected Inclusion Complexation between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers andα-Cyclodextrin. Journal of the American Chemical Society, 2003, 125, 1788-1795.	6.6	218
50	Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials, 2011, 32, 9180-9187.	5.7	212
51	Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today, 2016, 11, 133-144.	6.2	208
52	Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials, 2016, 102, 187-197.	5.7	208
53	Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials, 2017, 130, 28-41.	5.7	200
54	Interactions of Phospholipid Bilayer with Chitosan:Â Effect of Molecular Weight and pH. Biomacromolecules, 2001, 2, 1161-1168.	2.6	198

#	Article	IF	CITATIONS
55	Myogenic Induction of Aligned Mesenchymal Stem Cell Sheets by Culture on Thermally Responsive Electrospun Nanofibers. Advanced Materials, 2007, 19, 2775-2779.	11.1	197
56	Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Scientific Reports, 2013, 3, 3462.	1.6	196
57	Poly(α-hydroxy acids): carriers for bone morphogenetic proteins. Biomaterials, 1996, 17, 187-194.	5.7	195
58	Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and α-Cyclodextrin. Macromolecules, 2001, 34, 7236-7237.	2.2	195
59	SOD Therapeutics: Latest Insights into Their Structure-Activity Relationships and Impact on the Cellular Redox-Based Signaling Pathways. Antioxidants and Redox Signaling, 2014, 20, 2372-2415.	2.5	194
60	Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography. Engineering, 2017, 3, 36-54.	3.2	193
61	Cationic Supramolecules Composed of Multiple Oligoethylenimine-Grafted β-Cyclodextrins Threaded on a Polymer Chain for Efficient Gene Delivery. Advanced Materials, 2006, 18, 2969-2974.	11.1	192
62	Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials, 2022, 7, 557-574.	23.3	187
63	Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab on A Chip, 2012, 12, 2097.	3.1	185
64	Photocrosslinkable polysaccharides based on chondroitin sulfate. Journal of Biomedical Materials Research Part B, 2004, 68A, 28-33.	3.0	183
65	Aligned core–shell nanofibers delivering bioactive proteins. Nanomedicine, 2006, 1, 465-471.	1.7	183
66	Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods, 2015, 84, 3-16.	1.9	182
67	Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell, 2016, 19, 406-414.	5.2	182
68	Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. Journal of the Royal Society Interface, 2010, 7, S67-82.	1.5	181
69	Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology, 2006, 17, 3880-3891.	1.3	179
70	Gene Transfer by DNA–Gelatin Nanospheres. Archives of Biochemistry and Biophysics, 1999, 361, 47-56.	1.4	177
71	Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials, 2006, 27, 1027-1034.	5.7	176
72	A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification. Stem Cell Reports, 2014, 3, 940-947.	2.3	176

#	Article	IF	CITATIONS
73	Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits. Biomaterials, 2003, 24, 2405-2412.	5.7	172
74	Harnessing Localized Ridges for Highâ€Aspectâ€Ratio Hierarchical Patterns with Dynamic Tunability and Multifunctionality. Advanced Materials, 2014, 26, 1763-1770.	11.1	171
75	A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials, 2001, 22, 1157-1169.	5.7	165
76	Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. Journal of Controlled Release, 2006, 116, 83-89.	4.8	162
77	Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. Journal of Biomedical Materials Research Part B, 1996, 30, 475-484.	3.0	156
78	Controlled Gene Delivery by DNA–Gelatin Nanospheres. Human Gene Therapy, 1998, 9, 1709-1717.	1.4	156
79	pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomaterialia, 2017, 58, 349-364.	4.1	155
80	Guidance of stem cell fate on 2D patterned surfaces. Biomaterials, 2012, 33, 6626-6633.	5.7	154
81	Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale, 2015, 7, 14191-14216.	2.8	153
82	Mast cell–derived particles deliver peripheral signals to remote lymph nodes. Journal of Experimental Medicine, 2009, 206, 2455-2467.	4.2	151
83	Emerging links between surface nanotechnology and endocytosis: Impact on nonviral gene delivery. Nano Today, 2010, 5, 553-569.	6.2	149
84	Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today, 2016, 11, 778-792.	6.2	148
85	Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. Journal of Biomedical Materials Research Part B, 2004, 68A, 286-295.	3.0	146
86	Quantitative Comparison of Intracellular Unpacking Kinetics of Polyplexes by a Model Constructed From Quantum Dot-FRET. Molecular Therapy, 2008, 16, 324-332.	3.7	145
87	Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers. Cellular and Molecular Bioengineering, 2008, 1, 133-145.	1.0	144
88	Synthesis and Characterization of New Biodegradable Amphiphilic Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 1 2003, 36, 2661-2667.	.0 Tf 50 14 2.2	17 Td (oxide)-l 143
89	Sustained viral gene delivery through core-shell fibers. Journal of Controlled Release, 2009, 139, 48-55.	4.8	143
90	Engineering Cell Membraneâ€Based Nanotherapeutics to Target Inflammation. Advanced Science, 2019, 6, 1900605.	5.6	143

#	Article	IF	CITATIONS
91	Intranasal Gene Transfer by Chitosan–DNA Nanospheres Protects BALB/c Mice Against Acute Respiratory Syncytial Virus Infection. Human Gene Therapy, 2002, 13, 1415-1425.	1.4	139
92	Immobilization of Galactose Ligands on Acrylic Acid Graft-Copolymerized Poly(ethylene terephthalate) Film and Its Application to Hepatocyte Culture. Biomacromolecules, 2003, 4, 157-165.	2.6	139
93	Designing Zonal Organization into Tissue-Engineered Cartilage. Tissue Engineering, 2007, 13, 405-414.	4.9	139
94	Engineered materials for in vivo delivery of genome-editing machinery. Nature Reviews Materials, 2019, 4, 726-737.	23.3	139
95	Multi-component nanorods for vaccination applications. Nanotechnology, 2005, 16, 484-487.	1.3	135
96	Transcription Factors MYOCD, SRF, Mesp1 and SMARCD3 Enhance the Cardio-Inducing Effect of GATA4, TBX5, and MEF2C during Direct Cellular Reprogramming. PLoS ONE, 2013, 8, e63577.	1.1	135
97	Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. Biomaterials, 2006, 27, 4087-4097.	5.7	134
98	Substrate topography shapes cell function. Soft Matter, 2009, 5, 4072.	1.2	134
99	Light: A Magical Tool for Controlled Drug Delivery. Advanced Functional Materials, 2020, 30, 2005029.	7.8	134
100	Nanotopography as modulator of human mesenchymal stem cell function. Biomaterials, 2012, 33, 4998-5003.	5.7	133
101	Cell-laden microfluidic microgels for tissue regeneration. Lab on A Chip, 2016, 16, 4482-4506.	3.1	133
102	Dynamic Topographical Control of Mesenchymal Stem Cells by Culture on Responsive Poly(ϵâ€caprolactone) Surfaces. Advanced Materials, 2011, 23, 3278-3283.	11.1	132
103	Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage. ACS Nano, 2013, 7, 9724-9734.	7.3	132
104	Recent Advances in Nanoparticle-Mediated siRNA Delivery. Annual Review of Biomedical Engineering, 2014, 16, 347-370.	5.7	131
105	Expansion of engrafting human hematopoietic stem/progenitor cells in threeâ€dimensional scaffolds with surfaceâ€immobilized fibronectin. Journal of Biomedical Materials Research - Part A, 2006, 78A, 781-791.	2.1	129
106	Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nature Communications, 2018, 9, 4291.	5.8	129
107	Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. Journal of Gene Medicine, 2006, 8, 477-487.	1.4	127
108	Functional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells. Experimental Hematology, 2007, 35, 771-781.	0.2	127

#	Article	IF	CITATIONS
109	MicroRNA delivery for regenerative medicine. Advanced Drug Delivery Reviews, 2015, 88, 108-122.	6.6	125
110	Walking the line: The fate of nanomaterials at biological barriers. Biomaterials, 2018, 174, 41-53.	5.7	125
111	Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. Journal of Controlled Release, 2013, 166, 227-233.	4.8	123
112	Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radical Biology and Medicine, 2011, 51, 1035-1053.	1.3	122
113	Nucleic acid-binding polymers as anti-inflammatory agents. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14055-14060.	3.3	122
114	Biomimetic Diselenideâ€Bridged Mesoporous Organosilica Nanoparticles as an Xâ€rayâ€Responsive Biodegradable Carrier for Chemoâ€Immunotherapy. Advanced Materials, 2020, 32, e2004385.	11.1	122
115	New polyphosphoramidate with a spermidine side chain as a gene carrier. Journal of Controlled Release, 2002, 83, 157-168.	4.8	120
116	Polyphosphoester microspheres for sustained release of biologically active nerve growth factor. Biomaterials, 2002, 23, 3765-3772.	5.7	120
117	Biocompatibility of a Biodegradable, Controlled-Release Polymer in the Rabbit Brain. Selective Cancer Therapeutics, 1989, 5, 55-65.	0.5	118
118	Novel anisotropic engineered cardiac tissues: Studies of electrical propagation. Biochemical and Biophysical Research Communications, 2007, 361, 847-853.	1.0	117
119	Enhanced gene expression in mouse muscle by sustained release of plasmid DNA using PPE-EA as a carrier. Gene Therapy, 2002, 9, 1254-1261.	2.3	116
120	Hepatocyte Encapsulation for Enhanced Cellular Functions. Tissue Engineering, 2000, 6, 481-495.	4.9	113
121	Polyanhydrides for controlled release of bioactive agents. Biomaterials, 1986, 7, 364-371.	5.7	111
122	Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS Applied Materials & Interfaces, 2017, 9, 10309-10337.	4.0	111
123	Three-dimensional co-culture of rat hepatocyte spheroids and NIH/3T3 fibroblasts enhances hepatocyte functional maintenance. Acta Biomaterialia, 2005, 1, 399-410.	4.1	110
124	Development of universal antidotes to control aptamer activity. Nature Medicine, 2009, 15, 1224-1228.	15.2	108
125	Controlled release from fibers of polyelectrolyte complexes. Journal of Controlled Release, 2005, 104, 347-358.	4.8	106
126	Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Science Advances, 2020, 6, eabb4005.	4.7	106

#	Article	IF	CITATIONS
127	In Vitro Gene Delivery Using Polyamidoamine Dendrimers with a Trimesyl Coreâ€. Biomacromolecules, 2005, 6, 341-350.	2.6	103
128	Spatial metagenomic characterization of microbial biogeography in the gut. Nature Biotechnology, 2019, 37, 877-883.	9.4	103
129	Synthesis of polyanhydrides: melt-polycondensation, dehydrochlorination, and dehydrative coupling. Macromolecules, 1987, 20, 705-712.	2.2	100
130	Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der p 1 for oral vaccination in mice. Vaccine, 2003, 21, 2720-2729.	1.7	99
131	Functional Recovery of Contused Spinal Cord in Rat with the Injection of Optimalâ€Đosed Cerium Oxide Nanoparticles. Advanced Science, 2017, 4, 1700034.	5.6	99
132	Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2984.	1.6	98
133	Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 340-349.	1.7	97
134	Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging. Nanomaterials, 2012, 2, 92-112.	1.9	95
135	Poly(d,llactide–co-ethyl ethylene phosphate)s as new drug carriers. Journal of Controlled Release, 2003, 92, 39-48.	4.8	94
136	Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells. Biomaterials, 2006, 27, 2723-2732.	5.7	94
137	Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Scientific Reports, 2014, 4, 5128.	1.6	94
138	Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. Science Advances, 2020, 6, eaay7148.	4.7	94
139	Micellization Phenomena of Biodegradable Amphiphilic Triblock Copolymers Consisting of Poly(β-hydroxyalkanoic acid) and Poly(ethylene oxide). Langmuir, 2005, 21, 8681-8685.	1.6	93
140	Phase II Randomized Trial of Autologous Formalin-Fixed Tumor Vaccine for Postsurgical Recurrence of Hepatocellular Carcinoma. Clinical Cancer Research, 2004, 10, 1574-1579.	3.2	92
141	Transport of chitosan–DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes. European Journal of Pharmaceutical Sciences, 2010, 39, 103-109.	1.9	92
142	Nucleic acid scavengers inhibit thrombosis without increasing bleeding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12938-12943.	3.3	92
143	Uniform Core–Shell Nanoparticles with Thiolated Hyaluronic Acid Coating to Enhance Oral Delivery of Insulin. Advanced Healthcare Materials, 2018, 7, e1800285.	3.9	90
144	Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nature Materials, 2012, 11, 250-257.	13.3	89

#	Article	IF	CITATIONS
145	Efficient Oneâ€Step Production of Microencapsulated Hepatocyte Spheroids with Enhanced Functions. Small, 2016, 12, 2720-2730.	5.2	89
146	A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nature Biotechnology, 2022, 40, 1259-1269.	9.4	89
147	Galactosylated ternary DNA/polyphosphoramidate nanoparticles mediate high gene transfection efficiency in hepatocytes. Journal of Controlled Release, 2005, 102, 749-763.	4.8	88
148	Interaction of Human Mesenchymal Stem Cells With Disc Cells. Spine, 2006, 31, 2036-2042.	1.0	87
149	In Vitro Chondrogenesis of Mesenchymal Stem Cells in Recombinant Silk-elastinlike Hydrogels. Pharmaceutical Research, 2008, 25, 692-699.	1.7	87
150	Gene transfer to hemophilia A mice via oral delivery of FVIII–chitosan nanoparticles. Journal of Controlled Release, 2008, 132, 252-259.	4.8	87
151	A nanoparticulate dual scavenger for targeted therapy of inflammatory bowel disease. Science Advances, 2022, 8, eabj2372.	4.7	87
152	Controlled local delivery of interleukin-2 by biodegradable polymers protects animals from experimental brain tumors and liver tumors. Pharmaceutical Research, 2001, 18, 899-906.	1.7	86
153	Effects of Topographical and Mechanical Property Alterations Induced by Oxygen Plasma Modification on Stem Cell Behavior. ACS Nano, 2012, 6, 8591-8598.	7.3	86
154	A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials, 2013, 34, 4564-4572.	5.7	86
155	Hydrogen-Bonded Tannic Acid-Based Anticancer Nanoparticle for Enhancement of Oral Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 42186-42197.	4.0	85
156	Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels. Scientific Reports, 2015, 5, 15116.	1.6	84
157	Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomaterialia, 2018, 76, 164-177.	4.1	84
158	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
159	Galactosylated PVDF membrane promotes hepatocyte attachment and functional maintenance. Biomaterials, 2003, 24, 4893-4903.	5.7	82
160	Hyperbranched Poly(amino ester)s with Different Terminal Amine Groups for DNA Delivery. Biomacromolecules, 2006, 7, 1879-1883.	2.6	81
161	Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing <i>Plasmodium</i> Parasites Based on Enzyme Activity Measurement. ACS Nano, 2012, 6, 10676-10683.	7.3	81
162	Evaluation of polyphosphates and polyphosphonates as degradable biomaterials. Journal of Biomedical Materials Research Part B, 1991, 25, 1151-1167.	3.0	80

#	Article	IF	CITATIONS
163	Block-Selected Molecular Recognition and Formation of Polypseudorotaxanes between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers andl±-Cyclodextrin. Angewandte Chemie - International Edition, 2003, 42, 69-72.	7.2	80
164	Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Therapy, 2003, 10, 1179-1188.	2.3	79
165	The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons. Biomaterials, 2014, 35, 5327-5336.	5.7	79
166	Water-Soluble and Nonionic Polyphosphoester:Â Synthesis, Degradation, Biocompatibility and Enhancement of Gene Expression in Mouse Muscle. Biomacromolecules, 2004, 5, 306-311.	2.6	78
167	Viscoelastic behaviour of human mesenchymal stem cells. BMC Cell Biology, 2008, 9, 40.	3.0	78
168	HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or <i>Natronobacterium gregoryi</i> Argonaute. Advanced Science, 2018, 5, 1700540.	5.6	78
169	3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures (Adv. Mater. 27/2015). Advanced Materials, 2015, 27, 4034-4034.	11.1	77
170	Fabrication of poly(phosphoester) nerve guides by immersion precipitation and the control of porosity. Biomaterials, 2001, 22, 1147-1156.	5.7	76
171	Mechanism of Fiber Formation by Interfacial Polyelectrolyte Complexation. Macromolecules, 2004, 37, 7019-7025.	2.2	74
172	Mechanism of oral tolerance induction to therapeutic proteins. Advanced Drug Delivery Reviews, 2013, 65, 759-773.	6.6	74
173	Multi-layered microcapsules for cell encapsulation. Biomaterials, 2002, 23, 849-856.	5.7	73
174	Dynamic and Static Light Scattering Studies on Self-Aggregation Behavior of Biodegradable Amphiphilic Poly(ethylene oxide)â^'Poly[(R)-3-hydroxybutyrate]â^'Poly(ethylene oxide) Triblock Copolymers in Aqueous Solution. Journal of Physical Chemistry B, 2006, 110, 5920-5926.	1.2	73
175	A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials, 2022, 280, 121279.	5.7	73
176	Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide): synthesis, temperature-sensitivity, and morphologies. Journal of Colloid and Interface Science, 2003, 266, 295-303.	5.0	72
177	Directed Assembly of Multisegment Au/Pt/Au Nanowires. Nano Letters, 2004, 4, 1163-1165.	4.5	72
178	Co-culture of Umbilical Cord Blood CD34þ Cells with Human Mesenchymal Stem Cells. Tissue Engineering, 2006, 12, 2161-2170.	4.9	72
179	Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15281-15292.	3.3	72
180	Controlled Delivery of Antigens and Adjuvants in Vaccine Development. Journal of Pharmaceutical Sciences, 1996, 85, 1261-1270.	1.6	71

#	Article	IF	CITATIONS
181	Biodegradable polyphosphoester micelles for gene delivery. Journal of Pharmaceutical Sciences, 2004, 93, 2142-2157.	1.6	71
182	Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1405-1421.	1.9	71
183	Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Clioblastoma Therapy. Nano Letters, 2019, 19, 1701-1705.	4.5	71
184	Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Science Advances, 2022, 8, eabm8011.	4.7	71
185	Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold. Biomaterials, 2006, 27, 6111-6122.	5.7	70
186	Deformation of stem cell nuclei by nanotopographical cues. Soft Matter, 2010, 6, 1675.	1.2	69
187	Preparation and Characterization of Inclusion Complexes of Biodegradable Amphiphilic Poly(ethylene) Tj ETQq1 Macromolecules, 2003, 36, 1209-1214.	1 0.784314 2.2	4 rgBT /Over 68
188	Engineering strategies to enhance nanoparticle-mediated oral delivery. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1549-1570.	1.9	68
189	A multifunctional mesoporous silica–gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay. Nanoscale, 2019, 11, 2631-2636.	2.8	68
190	Poly(Ethylene Glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cellular and Molecular Bioengineering, 2016, 9, 38-54.	1.0	67
191	An implantable blood clot–based immune niche for enhanced cancer vaccination. Science Advances, 2020, 6, .	4.7	66
192	Coculture of Mesenchymal Stem Cells and Respiratory Epithelial Cells to Engineer a Human Composite Respiratory Mucosa. Tissue Engineering, 2004, 10, 1426-1435.	4.9	65
193	Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency. Gene Therapy, 2004, 11, 1001-1010.	2.3	65
194	Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes. Journal of Controlled Release, 2019, 301, 119-128.	4.8	65
195	Growth inhibition of the 9L glioma using polymers to release heparin and cortisone acetate. Journal of Neuro-Oncology, 1990, 9, 131-138.	1.4	64
196	Transgene Expression in the Brain Stem Effected by Intramuscular Injection of Polyethylenimine/DNA Complexes. Molecular Therapy, 2001, 3, 658-664.	3.7	64
197	CNS gene transfer mediated by a novel controlled release system based on DNA complexes of degradable polycation PPE-EA: a comparison with polyethylenimine/DNA complexes. Gene Therapy, 2004, 11, 109-114.	2.3	64
198	Musculoskeletal Differentiation of Cells Derived from Human Embryonic Germ Cells. Stem Cells, 2005, 23, 113-123.	1.4	64

#	Article	IF	CITATIONS
199	Hepatic Differentiation Potential of Commercially Available Human Mesenchymal Stem Cells. Tissue Engineering, 2006, 12, 3477-3485.	4.9	64
200	Simultaneous non-invasive analysis of DNA condensation and stability by two-step QD-FRET. Nano Today, 2009, 4, 125-134.	6.2	64
201	Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale, 2014, 6, 7715-7729.	2.8	63
202	High density of immobilized galactose ligand enhances hepatocyte attachment and function. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1093-1104.	2.1	62
203	Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale, 2018, 10, 3307-3319.	2.8	62
204	Interfacial polycondensation and characterization of polyphosphates and polyphosphonates. Journal of Polymer Science Part A, 1991, 29, 1157-1165.	2.5	61
205	Engineering of a sugar-derivatized porous network for hepatocyte culture. Biomaterials, 1996, 17, 387-393.	5.7	61
206	Implantation of Mouse Embryonic Stem Cell-Derived Cardiac Progenitor Cells Preserves Function of Infarcted Murine Hearts. PLoS ONE, 2010, 5, e11536.	1.1	61
207	Engineering of a microfluidic cell culture platform embedded with nanoscale features. Lab on A Chip, 2011, 11, 1638.	3.1	61
208	Efficacy of engineered FVIII-producing skeletal muscle enhanced by growth factor-releasing co-axial electrospun fibers. Biomaterials, 2011, 32, 1669-1677.	5.7	61
209	Highly Aligned Nanofibrous Scaffold Derived from Decellularized Human Fibroblasts. Advanced Functional Materials, 2014, 24, 3027-3035.	7.8	61
210	Chitosan-DNA nanoparticles delivered by intrabiliary infusion enhance liver-targeted gene delivery. International Journal of Nanomedicine, 2006, 1, 507-522.	3.3	61
211	Microcapsules with improved mechanical stability for hepatocyte culture. Biomaterials, 2003, 24, 1771-1780.	5.7	60
212	Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7503-7508.	3.3	60
213	Evaluation of Hyperbranched Poly(amino ester)s of Amine Constitutions Similar to Polyethylenimine for DNA Delivery. Biomacromolecules, 2005, 6, 3166-3173.	2.6	59
214	Microfluidic Isolation and Enrichment of Nanoparticles. ACS Nano, 2020, 14, 16220-16240.	7.3	59
215	Nanoscale surfacing for regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 478-495.	3.3	58
216	Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues. PLoS ONE, 2013, 8, e65963.	1.1	58

#	Article	IF	Citations
217	Synthesis of Fluorosurfactants for Emulsion-Based Biological Applications. ACS Nano, 2014, 8, 3913-3920.	7.3	57
218	Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells. Blood, 2015, 125, 2418-2427.	0.6	57
219	Potency of a Scalable Nanoparticulate Subunit Vaccine. Nano Letters, 2018, 18, 3007-3016.	4.5	57
220	Collagen-based fibrous scaffold for spatial organization of encapsulated and seeded human mesenchymal stem cells. Biomaterials, 2009, 30, 1133-1142.	5.7	56
221	Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Science Advances, 2021, 7, .	4.7	56
222	A finite element model for predicting the distribution of drugs delivered intracranially to the brain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1810-R1821.	0.9	55
223	Nonviral Gene Delivery from Nonwoven Fibrous Scaffolds Fabricated by Interfacial Complexation of Polyelectrolytes. Molecular Therapy, 2006, 13, 1163-1172.	3.7	55
224	Inclusion Complexation and Formation of Polypseudorotaxanes between Poly[(ethylene) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tf	50,462 Td (
225	Adhesion contact dynamics of HepG2 cells on galactose-immobilized substrates. Biomaterials, 2003, 24, 837-850.	5.7	54
226	Efficacy of Paclitaxel Released From Bio-Adhesive Polymer Microspheres on Model Superficial Bladder Cancer. Journal of Urology, 2004, 171, 1324-1329.	0.2	54
227	Nonviral Direct Conversion of Primary Mouse Embryonic Fibroblasts to Neuronal Cells. Molecular Therapy - Nucleic Acids, 2012, 1, e32.	2.3	54
228	Tuned Cationic Dendronized Polymer: Molecular Scavenger for Rheumatoid Arthritis Treatment. Angewandte Chemie - International Edition, 2019, 58, 4254-4258.	7.2	54
229	Graphite intercalation chemistry: An interpretive review. Synthetic Metals, 1983, 5, 77-100.	2.1	53
230	A 3D Electroactive Polypyrrole-Collagen Fibrous Scaffold for Tissue Engineering. Polymers, 2011, 3, 527-544.	2.0	53

- Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials, 5.7 53 2015, 43, 61-70.
- 232Development of bioabsorbable glass fibres. Biomaterials, 1994, 15, 1057-1061.5.752233Celatin/chondroitin 6-sulfate microspheres for the delivery of therapeutic proteins to the joint.
Arthritis and Rheumatism, 1998, 41, 2185-2195.6.752234Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis.
Biomaterials, 2017, 120, 94-102.5.752

#	Article	IF	CITATIONS
235	Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis. Biomaterials, 2020, 242, 119919.	5.7	52
236	Differentiation of Mouse Induced Pluripotent Stem Cells (iPSCs) into Nucleus Pulposus-Like Cells In Vitro. PLoS ONE, 2013, 8, e75548.	1.1	52
237	Effects of MIP-1α, MIP-3α, and MIP-3β on the Induction of HIV Gag-specific Immune Response with DNA Vaccines. Molecular Therapy, 2007, 15, 1007-1015.	3.7	51
238	Fibronectin immobilized by covalent conjugation or physical adsorption shows different bioactivity on aminated-PET. Materials Science and Engineering C, 2007, 27, 213-219.	3.8	51
239	Tuning Physical Properties of Nanocomplexes through Microfluidics-Assisted Confinement. Nano Letters, 2011, 11, 2178-2182.	4.5	51
240	Encapsulation of biologics in self-assembled fibers as biostructural units for tissue engineering. Journal of Biomedical Materials Research Part B, 2004, 71A, 586-595.	3.0	50
241	Photo-crosslinkable microcapsules formed by polyelectrolyte copolymer and modified collagen for rat hepatocyte encapsulation. Biomaterials, 2004, 25, 3531-3540.	5.7	50
242	Cytotoxic effects of Mn(III) <i>N</i> -alkylpyridylporphyrins in the presence of cellular reductant, ascorbate. Free Radical Research, 2011, 45, 1289-1306.	1.5	50
243	Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials, 2021, 269, 120214.	5.7	49
244	Llse of Bioerodible Polymers Impregnated with Mitomycin in Glaucoma Filtration Surgery in Rabbits. Ophthalmology, 1991, 98, 503-508.	2.5	48
245	Detection of Single Enzymatic Events in Rare or Single Cells Using Microfluidics. ACS Nano, 2011, 5, 8305-8310.	7.3	48
246	Nucleic acid-based nanoengineering: novel structures for biomedical applications. Interface Focus, 2011, 1, 702-724.	1.5	48
247	Three-Dimensional Hydrodynamic Focusing Method for Polyplex Synthesis. ACS Nano, 2014, 8, 332-339.	7.3	48
248	Glaucoma Filtration Surgery in Rabbits Using Bioerodible Polymers and 5-Fluorouracil. Ophthalmology, 1987, 94, 1523-1530.	2.5	47
249	Dualâ€ S ensitive Micellar Nanoparticles Regulate DNA Unpacking and Enhance Geneâ€Đelivery Efficiency. Advanced Materials, 2010, 22, 2556-2560.	11.1	46
250	Materials innovation for co-delivery of diverse therapeutic cargos. RSC Advances, 2013, 3, 24794.	1.7	46
251	Shape-Controlled Synthesis of Hybrid Nanomaterials <i>via</i> Three-Dimensional Hydrodynamic Focusing. ACS Nano, 2014, 8, 10026-10034.	7.3	46
252	Nanoparticle-mediated inhibition of survivin to overcome drug resistance in cancer therapy. Journal of Controlled Release, 2016, 240, 454-464.	4.8	46

#	Article	IF	CITATIONS
253	Nanoparticleâ€Enabled Dual Modulation of Phagocytic Signals to Improve Macrophageâ€Mediated Cancer Immunotherapy. Small, 2020, 16, e2004240.	5.2	46
254	Glaucoma Filtration Surgery in Monkeys Using 5-Fluorouridine in Polyanhydride Disks. JAMA Ophthalmology, 1990, 108, 430.	2.6	45
255	A Versatile Nonviral Delivery System for Multiplex Geneâ€Editing in the Liver. Advanced Materials, 2020, 32, e2003537.	11.1	45
256	Effect of side-chain structures on gene transfer efficiency of biodegradable cationic polyphosphoesters. International Journal of Pharmaceutics, 2003, 265, 75-84.	2.6	44
257	Three-dimensional culture of rabbit nucleus pulposus cells in collagen microspheres. Spine Journal, 2011, 11, 947-960.	0.6	44
258	MR imaging of biodegradable polymeric microparticles: A potential method of monitoring local drug delivery. Magnetic Resonance in Medicine, 2005, 53, 614-620.	1.9	43
259	Low Oxygen Tension and Synthetic Nanogratings Improve the Uniformity and Stemness of Human Mesenchymal Stem Cell Layer. Molecular Therapy, 2010, 18, 1010-1018.	3.7	43
260	A Versatile and Robust Platform for the Scalable Manufacture of Biomimetic Nanovaccines. Advanced Science, 2021, 8, 2002020.	5.6	43
261	Fibroblast and hepatocyte behavior on synthetic polymer surfaces. Journal of Biomedical Materials Research Part B, 1991, 25, 741-759.	3.0	42
262	Extra- and intra-cellular fate of nanocarriers under dynamic interactions with biology. Nano Today, 2017, 14, 84-99.	6.2	42
263	Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. Acta Biomaterialia, 2018, 81, 195-207.	4.1	42
264	Anti-infective biomaterials with surface-decorated tachyplesin I. Biomaterials, 2018, 178, 351-362.	5.7	42
265	Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomaterialia, 2022, 143, 1-25.	4.1	42
266	Proliferation and differentiation of human embryonic germ cell derivatives in bioactive polymeric fibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1193-1217.	1.9	41
267	Small Intestinal Submucosa as a Potential Bioscaffold for Intervertebral Disc Regeneration. Spine, 2006, 31, 2423-2430.	1.0	41
268	Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Delivery and Translational Research, 2015, 5, 168-186.	3.0	41
269	Controlled release from poly(phosphoester) matrices. Journal of Controlled Release, 1995, 33, 13-21.	4.8	40
270	Chitosan-Induced Perturbation of Dipalmitoyl-sn-glycero-3-phosphocholine Membrane Bilayer. Langmuir, 2001, 17, 3749-3756.	1.6	40

#	Article	IF	CITATIONS
271	Evaluation of collagen and methylated collagen as gene carriers. International Journal of Pharmaceutics, 2004, 279, 115-126.	2.6	40
272	Poly(ethylene imine)â€ <i>g</i> â€chitosan using EXâ€810 as a spacer for nonviral gene delivery vectors. Journal of Biomedical Materials Research - Part A, 2009, 88A, 1058-1068.	2.1	40
273	Use of Cartilage Derived From Murine Induced Pluripotent Stem Cells for Osteoarthritis Drug Screening. Arthritis and Rheumatology, 2014, 66, 3062-3072.	2.9	40
274	Biomaterials control of pluripotent stem cell fate for regenerative therapy. Progress in Materials Science, 2016, 82, 234-293.	16.0	40
275	In vitro and in vivo studies of subcutaneous hydromorphone implants designed for the treatment of cancer pain. Pain, 1996, 65, 265-272.	2.0	39
276	In vitro release of vascular endothelial growth factor from gadolinium-doped biodegradable microspheres. Magnetic Resonance in Medicine, 2004, 51, 1265-1271.	1.9	39
277	Stimuli-Responsive Hydrogel Based on Poly(propylene phosphate). Macromolecules, 2004, 37, 670-672.	2.2	39
278	Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials, 2016, 85, 180-194.	5.7	39
279	A Cationic Metal–Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management. Nano Letters, 2021, 21, 2461-2469.	4.5	39
280	Dynamics of smooth muscle cell deadhesion from thermosensitive hydroxybutyl chitosan. Biomaterials, 2007, 28, 1503-1514.	5.7	38
281	Comparative study of nanoparticle-mediated transfection in different GI epithelium co-culture models. Journal of Controlled Release, 2012, 160, 48-56.	4.8	38
282	Improvements in Solubility and Stability of Thalidomide upon Complexation with Hydroxypropyl-β-Cyclodextrin. Journal of Pharmaceutical Sciences, 1992, 81, 685-689.	1.6	37
283	Design of Polyphosphoesterâ€ÐNA Nanoparticles for Nonâ€Viral Gene Delivery. Advances in Genetics, 2005, 53PA, 275-306.	0.8	37
284	Tissue Compatibility of Interfacial Polyelectrolyte Complexation Fibrous Scaffold: Evaluation of Blood Compatibility and Biocompatibility. Tissue Engineering, 2007, 13, 423-433.	4.9	37
285	Label-Free, High-Throughput Measurements of Dynamic Changes in Cell Nuclei Using Angle-Resolved Low Coherence Interferometry. Biophysical Journal, 2008, 94, 4948-4956.	0.2	37
286	High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts. Biomaterials, 2011, 32, 3611-3619.	5.7	37
287	Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 399-409.	1.7	37
288	Galactosylated Poly(vinylidene difluoride) Hollow Fiber Bioreactor for Hepatocyte Culture. Tissue Engineering, 2005, 11, 1667-1677.	4.9	36

#	Article	IF	CITATIONS
289	In Vivo Evaluation of Plasmid DNA Encoding OP-1 Protein for Spine Fusion. Spine, 2006, 31, 2163-2172.	1.0	36
290	Microfluidic Preparation of Polymer-Nucleic Acid Nanocomplexes Improves Nonviral Gene Transfer. Scientific Reports, 2013, 3, 3155.	1.6	36
291	Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Scientific Reports, 2017, 7, 40285.	1.6	36
292	Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano Today, 2021, 40, 101280.	6.2	36
293	Nonendocytic Delivery of Lipoplex Nanoparticles into Living Cells Using Nanochannel Electroporation. Advanced Healthcare Materials, 2014, 3, 682-689.	3.9	35
294	Flash technology-based self-assembly in nanoformulation: Fabrication to biomedical applications. Materials Today, 2021, 42, 99-116.	8.3	35
295	N-acetylglucosamine and adenosine derivatized surfaces for cell culture: 3T3 fibroblast and chicken hepatocyte response. Biotechnology and Bioengineering, 1994, 43, 801-809.	1.7	34
296	Coacervate microspheres as carriers of recombinant adenoviruses. Cancer Gene Therapy, 1999, 6, 107-112.	2.2	34
297	A Nonlinear Hyperelastic Mixture Theory Model for Anisotropy, Transport, and Swelling of Annulus Fibrosus. Annals of Biomedical Engineering, 2004, 32, 92-102.	1.3	34
298	Whole Blood Cells Loaded with Messenger RNA as an Antiâ€Tumor Vaccine. Advanced Healthcare Materials, 2014, 3, 837-842.	3.9	34
299	Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing. Acta Biomaterialia, 2019, 90, 60-70.	4.1	34
300	DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials, 2022, 283, 121393.	5.7	34
301	Electrosprayed core–shell microspheres for protein delivery. Chemical Communications, 2010, 46, 4743.	2.2	33
302	Coupling spatial segregation with synthetic circuits to control bacterial survival. Molecular Systems Biology, 2016, 12, 859.	3.2	33
303	Biostable electrospun microfibrous scaffolds mitigate hypertrophic scar contraction in an immune-competent murine model. Acta Biomaterialia, 2016, 32, 100-109.	4.1	33
304	Atom Transfer Radical Polymerization of Multishelled Cationic Corona for the Systemic Delivery of siRNA. Nano Letters, 2018, 18, 314-325.	4.5	33
305	Biomaterial-assisted scalable cell production for cell therapy. Biomaterials, 2020, 230, 119627.	5.7	33
306	A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. Journal of Controlled Release, 2020, 318, 86-97.	4.8	33

#	Article	IF	CITATIONS
307	Nanoparticle- and biomaterials-mediated oral delivery for drug, gene, and immunotherapy. Advanced Drug Delivery Reviews, 2013, 65, 757-758.	6.6	32
308	A novel immune competent murine hypertrophic scar contracture model: A tool to elucidate disease mechanism and develop new therapies. Wound Repair and Regeneration, 2014, 22, 755-764.	1.5	32
309	NanoCluster Beacons as reporter probes in rolling circle enhanced enzyme activity detection. Nanoscale, 2015, 7, 8332-8337.	2.8	32
310	Morphology, Migration, and Transcriptome Analysis of Schwann Cell Culture on Butterfly Wings with Different Surface Architectures. ACS Nano, 2018, 12, 9660-9668.	7.3	32
311	Drug delivery carriers with therapeutic functions. Advanced Drug Delivery Reviews, 2021, 176, 113884.	6.6	32
312	An Injectable Antibiotic Hydrogel that Scavenges Proinflammatory Factors for the Treatment of Severe Abdominal Trauma. Advanced Functional Materials, 2022, 32, .	7.8	32
313	The convergence of quantum-dot-mediated fluorescence resonance energy transfer and microfluidics for monitoring DNA polyplex self-assembly in real time. Nanotechnology, 2009, 20, 095103.	1.3	31
314	Cleavable Multifunctional Targeting Mixed Micelles with Sequential pH-Triggered TAT Peptide Activation for Improved Antihepatocellular Carcinoma Efficacy. Molecular Pharmaceutics, 2017, 14, 3644-3659.	2.3	31
315	Highâ€Throughput Tumorâ€onâ€aâ€Chip Platform to Study Tumor–Stroma Interactions and Drug Pharmacokinetics. Advanced Healthcare Materials, 2020, 9, e2000880.	3.9	31
316	CRISPR/Cas9â€mediated mutagenesis to validate the synergy between PARP1 inhibition and chemotherapy in <i>BRCA1</i> â€mutated breast cancer cells. Bioengineering and Translational Medicine, 2020, 5, e10152.	3.9	31
317	Bioavailability of metalloporphyrin-based SOD mimics is greatly influenced by a single charge residing on a Mn site. Free Radical Research, 2011, 45, 188-200.	1.5	30
318	Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies?. International Journal of Energy Production and Management, 2016, 3, 87-98.	1.9	30
319	Poly(phosphoester) ionomers as tissue-engineering scaffolds. Journal of Biomedical Materials Research Part B, 2004, 70B, 91-102.	3.0	29
320	Uptake and Intracellular Fate of Multifunctional Nanoparticles: A Comparison between Lipoplexes and Polyplexes via Quantum Dot Mediated Förster Resonance Energy Transfer. Molecular Pharmaceutics, 2011, 8, 1662-1668.	2.3	29
321	Synthesis and characterization of putrescine-based poly(phosphoester-urethanes). Journal of Biomaterials Science, Polymer Edition, 1993, 4, 529-543.	1.9	28
322	Role of intermolecular interaction between hydrophobic blocks in block-selected inclusion complexation of amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) triblock copolymers with cyclodextrins. Polymer, 2004, 45, 6845-6851.	1.8	28
323	Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors. Nanomedicine, 2012, 7, 565-577.	1.7	28
324	Nanotopography Alters Nuclear Protein Expression, Proliferation and Differentiation of Human Mesenchymal Stem/Stromal Cells. PLoS ONE, 2014, 9, e114698.	1.1	28

#	Article	IF	CITATIONS
325	Signal-on Protein Detection via Dye Translocation between Aptamer and Quantum Dot. ACS Applied Materials & Interfaces, 2016, 8, 12048-12055.	4.0	28
326	Real-time observation of leukocyte–endothelium interactions in tissue-engineered blood vessel. Lab on A Chip, 2018, 18, 2047-2054.	3.1	28
327	Oral Nonviral Gene Delivery for Chronic Protein Replacement Therapy. Advanced Science, 2018, 5, 1701079.	5.6	28
328	Surface Coating Approach to Overcome Mucosal Entrapment of DNA Nanoparticles for Oral Gene Delivery of Glucagon-like Peptide 1. ACS Applied Materials & Interfaces, 2019, 11, 29593-29603.	4.0	28
329	Engineering Liver Microtissues for Disease Modeling and Regenerative Medicine. Advanced Functional Materials, 2020, 30, 1909553.	7.8	28
330	Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems. Lab on A Chip, 2014, 14, 514-521.	3.1	27
331	Scalable Production of Therapeutic Protein Nanoparticles Using Flash Nanoprecipitation. Advanced Healthcare Materials, 2019, 8, e1801010.	3.9	27
332	Doseâ€Dependent Carbonâ€Dotâ€Induced ROS Promote Uveal Melanoma Cell Tumorigenicity via Activation of mTOR Signaling and Glutamine Metabolism. Advanced Science, 2021, 8, 2002404.	5.6	27
333	Nanotechnology for pain management: Current and future therapeutic interventions. Nano Today, 2021, 39, 101223.	6.2	27
334	Scalable Manufacturing of Enteric Encapsulation Systems for Site-Specific Oral Insulin Delivery. Biomacromolecules, 2019, 20, 528-538.	2.6	26
335	Promoting reactive oxygen species generation: a key strategy in nanosensitizer-mediated radiotherapy. Nanomedicine, 2021, 16, 759-778.	1.7	26
336	Ternary Complexes Comprising Polyphosphoramidate Gene Carriers with Different Types of Charge Groups Improve Transfection Efficiencyâ€. Biomacromolecules, 2005, 6, 54-60.	2.6	25
337	Design considerations for an integrated microphysiological muscle tissue for drug and tissue toxicity testing. Stem Cell Research and Therapy, 2013, 4, S10.	2.4	25
338	Dynamic control and quantification of bacterial population dynamics in droplets. Biomaterials, 2015, 61, 239-245.	5.7	25
339	High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets. Nanoscale, 2017, 9, 3485-3495.	2.8	25
340	Identification of Specific Joint-Inflammatogenic Cell-Free DNA Molecules From Synovial Fluids of Patients With Rheumatoid Arthritis. Frontiers in Immunology, 2020, 11, 662.	2.2	24
341	Autologous Fixed Tumor Vaccine: A Formulation with Cytokine-microparticles for Protective Immunity against Recurrence of Human Hepatocellular Carcinoma. Japanese Journal of Cancer Research, 2002, 93, 363-368.	1.7	23
342	Radioresponsive tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy for malignant brain tumors. Cancer Gene Therapy, 2007, 14, 706-716.	2.2	23

#	Article	IF	CITATIONS
343	Therapeutic nanorods with metallic multi-segments: Thermally inducible encapsulation of doxorubicin for anti-cancer therapy. Nano Today, 2012, 7, 76-84.	6.2	23
344	Controlled Release and Magnetically Modulated Systems for Macromolecular Drugs. Annals of the New York Academy of Sciences, 1985, 446, 1-13.	1.8	22
345	The Use of Bioerodible Polymers and Daunorubicin in Glaucoma Filtration Surgery. Ophthalmology, 1996, 103, 800-807.	2.5	22
346	Antigen-Specific Induction of Peripheral T Cell Tolerancein Vivoby Codelivery of DNA Vectors Encoding Antigen and Fas Ligand. Human Gene Therapy, 2000, 11, 851-858.	1.4	22
347	Adhesion contact dynamics of primary hepatocytes on poly(ethylene terephthalate) surface. Biomaterials, 2005, 26, 891-898.	5.7	22
348	The Inhibition of Anti-DNA Binding to DNA by Nucleic Acid Binding Polymers. PLoS ONE, 2012, 7, e40862.	1.1	22
349	Microcapsules obtained from complex coacervation of collagen and chondroitin sulfate. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 389-399.	1.9	21
350	Multifunctional Nanorods Serving as Nanobridges To Modulate T Cell-Mediated Immunity. ACS Nano, 2013, 7, 9771-9779.	7.3	21
351	Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy. Carbon, 2018, 129, 863-868.	5.4	21
352	Prevention of excessive scar formation using nanofibrous meshes made of biodegradable elastomer poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate). Journal of Tissue Engineering, 2020, 11, 204173142094933.	2.3	21
353	Degradable biomaterials with elastomeric characteristics and drug-carrier function. Reactive & Functional Polymers, 1995, 25, 101-109.	0.8	20
354	Biodegradable poly(terephthalate-co-phosphate)s: synthesis, characterization and drug-release properties. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 135-161.	1.9	20
355	Polymeric Controlled Nucleic Acid Delivery. MRS Bulletin, 2005, 30, 640-646.	1.7	20
356	Nucleic acid-binding polymers as anti-inflammatory agents: reducing the danger of nuclear attack. Expert Review of Clinical Immunology, 2012, 8, 1-3.	1.3	20
357	Colloidal adhesion of phospholipid vesicles: high-resolution reflection interference contrast microscopy and theory. Colloids and Surfaces B: Biointerfaces, 2002, 25, 347-362.	2.5	19
358	Nanografted Substrata and Triculture of Human Pericytes, Fibroblasts, and Endothelial Cells for Studying the Effects on Angiogenesis. Tissue Engineering - Part A, 2016, 22, 698-706.	1.6	19
359	Scarless Wound Closure by a Mussel-Inspired Poly(amidoamine) Tissue Adhesive with Tunable Degradability. ACS Omega, 2017, 2, 6053-6062.	1.6	19
360	Identification of an Integrin α6â€Targeted Peptide for Nasopharyngeal Carcinomaâ€Specific Nanotherapeutics. Advanced Therapeutics, 2019, 2, 1900018.	1.6	19

#	Article	IF	CITATIONS
361	Targeting multiple mediators of sepsis using multifunctional tannic acid-Zn2+-gentamicin nanoparticles. Matter, 2021, 4, 3677-3695.	5.0	19
362	Radiation-Inducible Caspase-8 Gene Therapy for Malignant Brain Tumors. International Journal of Radiation Oncology Biology Physics, 2008, 71, 517-525.	0.4	18
363	Chemical modification of collagen improves glycosaminoglycan retention of their co-precipitates. Acta Biomaterialia, 2013, 9, 4661-4672.	4.1	18
364	The use of magnetic resonance imaging to track controlled drug release and transport in the brain. Magnetic Resonance Imaging, 1993, 11, 247-252.	1.0	17
365	Enhancing Efficacy of HIV Gag DNA Vaccine by Local Delivery of GM-CSF in Murine and Macaque Models. Journal of Interferon and Cytokine Research, 2006, 26, 380-389.	0.5	17
366	Polycationic Nanofibers for Nucleic Acid Scavenging. Biomacromolecules, 2016, 17, 3706-3713.	2.6	17
367	Flash Fabrication of Orally Targeted Nanocomplexes for Improved Transport of Salmon Calcitonin across the Intestine. Molecular Pharmaceutics, 2020, 17, 757-768.	2.3	17
368	Dual-Color Plasmonic Nanosensor for Radiation Dosimetry. ACS Applied Materials & amp; Interfaces, 2020, 12, 22499-22506.	4.0	17
369	A Robust Strategy for Negative Selection of Cre-LoxP Recombination-Based Excision of Transgenes in Induced Pluripotent Stem Cells. PLoS ONE, 2013, 8, e64342.	1.1	16
370	Pharmacokinetics of Etoposide Delivery by a Bioerodible Drug Carrier Implanted at Glaucoma Surgery. Journal of Ocular Pharmacology and Therapeutics, 1994, 10, 471-479.	0.6	15
371	In Vivo US Monitoring of Catheter-based Vascular Delivery of Gene Microspheres in Pigs: Feasibility. Radiology, 2003, 228, 555-559.	3.6	15
372	Microwave tumour coagulation plusin situtreatment with cytokine-microparticles: Induction of potent anti-residual tumour immunity. International Journal of Hyperthermia, 2005, 21, 247-257.	1.1	15
373	Tissue-Engineered Bone Formation With Gene Transfer and Mesenchymal Stem Cells in a Minimally Invasive Technique. Laryngoscope, 2007, 117, 1267-1271.	1.1	14
374	Knockdown of the Cell Cycle Inhibitor p21 Enhances Cartilage Formation by Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2015, 21, 1261-1274.	1.6	14
375	A versatile platform for surface modification of microfluidic droplets. Lab on A Chip, 2017, 17, 635-639.	3.1	14
376	Bioreactor model of neuromuscular junction with electrical stimulation for pharmacological potency testing. Integrative Biology (United Kingdom), 2017, 9, 956-967.	0.6	14
377	Advanced Cell and Tissue Biomanufacturing. ACS Biomaterials Science and Engineering, 2018, 4, 2292-2307.	2.6	14
378	Emulating Early Atherosclerosis in a Vascular Microphysiological System Using Branched Tissueâ€Engineered Blood Vessels. Advanced Biology, 2021, 5, e2000428.	1.4	14

#	Article	IF	CITATIONS
379	pH responsive adhesion of phospholipid vesicle on poly(acrylic acid) cushion grafted to poly(ethylene) Tj ETQq1 1	0,784314 2.5	rgBT /Over
380	A dual-functional fibrous scaffold enhances P450 activity of cultured primary rat hepatocytes. Acta Biomaterialia, 2007, 3, 643-650.	4.1	13
381	Sustained release of papaverine for the treatment of cerebral vasospasm: in vitro evaluation of release kinetics and biological activity. Journal of Neurosurgery, 1992, 77, 783-787.	0.9	12
382	Targeted delivery of immunomicrospheresin vivo. Drug Delivery, 1995, 2, 166-174.	2.5	12
383	Title is missing!. Angewandte Chemie, 2003, 115, 73-76.	1.6	12
384	BHEM-Chol/DOPE liposome induced perturbation of phospholipid bilayer. Colloids and Surfaces B: Biointerfaces, 2003, 29, 233-245.	2.5	12
385	Application of induced pluripotent stem cells to model smooth muscle cell function in vascular diseases. Current Opinion in Biomedical Engineering, 2017, 1, 38-44.	1.8	12
386	A highly selective dual-therapeutic nanosystem for simultaneous anticancer and antiangiogenesis therapy. Journal of Materials Chemistry B, 2017, 5, 8228-8237.	2.9	12
387	Biofunctional Janus particles promote phagocytosis of tumor cells by macrophages. Chemical Science, 2020, 11, 5323-5327.	3.7	12
388	Inhibition of DNA replication initiation by silver nanoclusters. Nucleic Acids Research, 2021, 49, 5074-5083.	6.5	12
389	Design of polyphosphoester-DNA nanoparticles for non-viral gene delivery. Advances in Genetics, 2005, 53, 275-306.	0.8	12
390	A mathematical model of polymeric controlled drug release and transport in the brain. Journal of Controlled Release, 1995, 36, 199-207.	4.8	11
391	Bioadhesive characterization of poly(methylidene malonate 2.12) microparticle on model extracellular matrix. Biomaterials, 2004, 25, 4327-4332.	5.7	11
392	CRISPR Technology for Breast Cancer: Diagnostics, Modeling, and Therapy. Advanced Biology, 2018, 2, 1800132.	3.0	11
393	Polyelectrolyte Complex Films Derived from Polyethyleneoxide-Maleic Acid Copolymer and Chitosan: Preparation and Characterization. Macromolecular Bioscience, 2004, 4, 526-531.	2.1	10
394	Viscoelastic Properties of Human Mesenchymal Stem Cells. , 2005, 2005, 4854-7.		10
395	Cell–Substrate Interactions. , 2019, , 437-468.		10
396	Impaired cholesterol efflux in retinal pigment epithelium of individuals with juvenile macular degeneration. American Journal of Human Genetics, 2021, 108, 903-918.	2.6	10

#	Article	IF	CITATIONS
397	Acute myelomonocytic leukaemia complicated by an acute aortic thrombosis Postgraduate Medical Journal, 1995, 71, 112-113.	0.9	9
398	Engineering microenvironment for expansion of sensitive anchorage-dependent mammalian cells. Journal of Biotechnology, 2005, 118, 434-447.	1.9	9
399	Intervertebral disc regeneration using small intestinal submucosa as a bioscaffold. Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8, 177-177.	0.9	9
400	Quantum-dots-FRET nanosensors for detecting unamplified nucleic acids by single molecule detection. Nanomedicine, 2006, 1, 119-122.	1.7	9
401	Chaperoning vaccines. Nature Materials, 2010, 9, 537-538.	13.3	9
402	Microscale oral delivery devices incorporating nanoparticles. Nanomedicine, 2010, 5, 161-163.	1.7	9
403	Stem cell differentiation indicated by noninvasive photonic characterization and fractal analysis of subcellular architecture. Integrative Biology (United Kingdom), 2011, 3, 863.	0.6	9
404	Comparison of Mixed and Lamellar Coculture Spatial Arrangements for Tissue Engineering Capillary Networks <i>In Vitro</i> . Tissue Engineering - Part A, 2013, 19, 697-706.	1.6	9
405	Enhanced efficiency of nonviral direct neuronal reprogramming on topographical patterns. Biomaterials Science, 2021, 9, 5175-5191.	2.6	9
406	Investigation of Neurodevelopmental Deficits of 22 q11.2 Deletion Syndrome with a Patient-iPSC-Derived Blood–Brain Barrier Model. Cells, 2021, 10, 2576.	1.8	9
407	Corticosteroid-responsive prolonged thrombocytopenia following dengue haemorrhagic fever. Medical Journal of Malaysia, 1993, 48, 369-72.	0.2	9
408	Scalable biomimetic SARS-CoV‑2 nanovaccines with robust protective immune responses. Signal Transduction and Targeted Therapy, 2022, 7, 96.	7.1	9
409	Alternative Materials for Fracture Fixation. Connective Tissue Research, 1995, 31, s69-s75.	1.1	8
410	Successful pregnancy following aplastic anaemia Postgraduate Medical Journal, 1995, 71, 625-627.	0.9	8
411	Use of Ultrathin Shell Microcapsules of Hepatocytes in Bioartificial Liver-Assist Device. Tissue Engineering, 2003, 9, 65-75.	4.9	8
412	Janus metallic mesoporous silica nanoparticles: Unique structures for cancer theranostics. Current Opinion in Biomedical Engineering, 2021, 19, 100294.	1.8	8
413	Scavenging Tumorâ€Đerived Small Extracellular Vesicles by Functionalized 2D Materials to Inhibit Tumor Regrowth and Metastasis Following Radiotherapy. Advanced Functional Materials, 2022, 32, .	7.8	8
414	Synthesis and Characterization of Hydrolytically Labile Poly(phosphoester—urethanes). ACS Symposium Series, 1991, , 141-154.	0.5	7

4

#	Article	IF	CITATIONS
415	Mechanistic Considerations of the Therapeutic Effects of Mn Porphyrins, Commonly Regarded as SOD Mimics, in Anticancer Therapy: Lessons from Brain and Lymphoma Studies. Free Radical Biology and Medicine, 2013, 65, S120-S121.	1.3	7
416	Immobilization of nucleic acid binding polymers as anti-inflammatory agent in autoimmunity. Journal of Controlled Release, 2015, 213, e136.	4.8	7
417	CRISPR/dCas9-mediated cell differentiation. Current Opinion in Biomedical Engineering, 2018, 7, 9-15.	1.8	7
418	The Sustained Release of Galardin and Taxol from Gelatin Chondroitin Sulfate Coacervate Films. Materials Research Society Symposia Proceedings, 1995, 394, 55.	0.1	6
419	Cationic Gelatin as a Gene Carrier. Materials Research Society Symposia Proceedings, 1995, 394, 61.	0.1	6
420	Transient Depletion of Kupffer Cells Leads to Enhanced Transgene Expression in Rat Liver Following Retrograde Intrabiliary Infusion of Plasmid DNA and DNA Nanoparticles. Human Gene Therapy, 2011, 22, 873-878.	1.4	6
421	Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis. Scientific Reports, 2014, 4, 7403.	1.6	6
422	Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. Journal of Tissue Engineering, 2021, 12, 204173142098529.	2.3	6
423	Ultrasonic Modulated Drug Delivery Systems. , 1986, , 387-396.		6
424	Enhanced extracellular matrix production and differentiation of human embryonic germ cell derivatives in biodegradable poly(ε-caprolactone-co-ethyl ethylene phosphate) scaffold. Acta Biomaterialia, 2006, 2, 365-376.	4.1	5
425	Polymer Design for Nonviral Gene Delivery. , 2006, , 239-263.		5
426	Radio-responsive gene therapy for malignant glioma cells without the radiosensitive promoter: Caspase-3 gene therapy combined with radiation. Cancer Letters, 2007, 246, 318-323.	3.2	5
427	Nanograting structure promotes lamellipodia-based cell collective migration and wound healing. , 2014, 2014, 2916-9.		5
428	Conversion of carbon-graphite fibers to fibers of graphite oxide. Materials Science and Engineering, 1984, 64, 149-155.	0.1	4
429	Biodegradable Foams for Cell Transplantation. Materials Research Society Symposia Proceedings, 1993, 331, 41.	0.1	4
430	Controlled Drug Delivery to the Joints by Enzymatically Degradable Microspheres. Materials Research Society Symposia Proceedings, 1993, 331, 73.	0.1	4
431	Mechanical behavior of human embryonic stem cell pellet under unconfined compression. Biomechanics and Modeling in Mechanobiology, 2012, 11, 703-714.	1.4	4

432 Microfluidic Cell Culture Platforms with Embedded Nanoscale Features. , 2013, , 3-26.

#	Article	IF	CITATIONS
433	Human mesenchymal stem cell basal membrane bending on gratings is dependent on both grating width and curvature. Scientific Reports, 2018, 8, 6444.	1.6	4
434	Rat hepatocyte morphology and function on lactoseâ€derivatized polystyrene surfaces. Biotechnology and Bioengineering, 1996, 49, 259-265.	1.7	4
435	In Vitro Release of Hydrophobic Drugs From Polyanhydride Disks. Ophthalmic Surgery Lasers and Imaging Retina, 1991, 22, 676-680.	0.4	4
436	Microfluidics-mediated isothermal detection of enzyme activity at the single molecule level. , 2011, 2011, 3258-61.		3
437	Expanding Nanopatterned Substrates Using Stitch Technique for Nanotopographical Modulation of Cell Behavior. Journal of Visualized Experiments, 2016, , .	0.2	3
438	Tuned Cationic Dendronized Polymer: Molecular Scavenger for Rheumatoid Arthritis Treatment. Angewandte Chemie, 2019, 131, 4298-4302.	1.6	3
439	Microfluidic platforms with nanoscale features. , 2019, , 65-90.		3
440	Rat hepatocyte morphology and function on lactose-derivatized polystyrene surfaces. Biotechnology and Bioengineering, 2000, 49, 259-265.	1.7	2
441	Cell–Substrate Interactions. , 2008, , 666-685.		2
442	Advantage of induction therapy with all trans retinoic acid in acute promyelocytic leukaemia in a country with limited transfusion resources: A Malaysian experience. European Journal of Haematology, 1994, 53, 237-241.	1.1	2
443	Combining QD-FRET and Microfluidics to Monitor DNA Nanocomplex Self-Assembly in Real-Time. Journal of Visualized Experiments, 2009, , .	0.2	2
444	Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Journal of Controlled Release, 2015, 213, e66-e67.	4.8	2
445	Poly(Phosphoesters) as Bioabsorbable Osteosynthetic Materials. Materials Research Society Symposia Proceedings, 1991, 252, 311.	0.1	1
446	Synthesis and Characterization of Methacrylic Derivatives as Drug Carriers. Drug Development and Industrial Pharmacy, 1997, 23, 671-678.	0.9	1
447	Formation of Highly Porous Polymeric Foams with Controlled Release Capability: A Phase-Separation Technique. , 1999, 18, 57-66.		1
448	Fixed-tumor vaccine: A practical formulation with cytokine-microspheres for protective and therapeutic antitumor immunity. Chinese-German Journal of Clinical Oncology, 2003, 2, 196-202.	0.1	1
449	Quantitative kinetic analysis of DNA nanocomplex self-assembly with Quantum Dots FRET in a microfluidic device. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	1
450	Synthesis and Cytotoxicity of Luminescent InP Quantum Dots. Materials Research Society Symposia Proceedings, 2009, 1241, 1.	0.1	1

#	Article	IF	CITATIONS
451	Single cell enzyme diagnosis on the chip. , 2013, , .		1
452	Gene Delivery: Nonendocytic Delivery of Lipoplex Nanoparticles into Living Cells Using Nanochannel Electroporation (Adv. Healthcare Mater. 5/2014). Advanced Healthcare Materials, 2014, 3, 622-622.	3.9	1
453	Smart Theranostic Nanosystems. , 2016, , 523-549.		1
454	Polymeric Scaffolds for Tissue Engineering. , 2003, , 395-411.		1
455	Polymeric Scaffolds for Gene Delivery and Regenerative Medicine. , 2005, , 317-334.		1
456	Stem Cells in Cardiac Tissue Engineering. , 2010, , 611-635.		1
457	Biopolymer—DNA Nanospheres. , 1999, , 267-287.		1
458	Anti-lymphocyte globulin therapy in aplastic anaemiaa university hospital experience. Medical Journal of Malaysia, 1995, 50, 158-61.	0.2	1
459	Synthesis and Characterization of Polymer Substrates for Rat H Epatocyte Culture. Materials Research Society Symposia Proceedings, 1993, 330, 243.	0.1	0
460	Enzymatically Degradable Synthetic Polymers. Materials Research Society Symposia Proceedings, 1995, 394, 199.	0.1	0
461	Novel method for imaging biodegradable polymeric microparticles using MRI: application toward monitoring drug delivery. , 0, , .		0
462	Microsphere as a contrast agent/gene vector in ultrasound imaging-based vascular gene delivery. , 0, ,		0
463	Spinal Fusion by Percutaneous OP-1 Gene Delivery. Journal of Korean Society of Spine Surgery, 2003, 10, 283.	0.3	Ο
464	Block-Selected Molecular Recognition and Formation of Polypseudorotaxanes between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers andα-Cyclodextrin. Angewandte Chemie - International Edition, 2004, 43, 3215-3215.	7.2	0
465	Targeted Tumor Cell Death Induced by Autologous Tumor-Specific T Lymphocyte Recognition of Wild-Type p53-Derived Peptides. Journal of Neuro-Oncology, 2006, 76, 99-104.	1.4	0
466	171. PEG-b-PPA/DNA Micelles for Liver Targeted-Gene Delivery. Molecular Therapy, 2006, 13, S66.	3.7	0
467	Unexpected properties of polymeric DNA-nanocomplexes synthesized in picoliter droplets. , 2011, , .		0
468	Mitigation of hypertrophic scar contraction in an immune-competent mouse model via a biostable electrospun scaffold. Journal of the American College of Surgeons, 2015, 221, e119-e120.	0.2	0

#	Article	IF	CITATIONS
469	59. Multiplex Gene Activation by CRISPR/Cas9-Based Transcription Factors for the Direct Conversion of Fibroblasts to a Neuronal Phenotype. Molecular Therapy, 2015, 23, S26.	3.7	0
470	272. Nucleic Acid Scavenging Nanofibers as Anti-Inflammatory Meshes. Molecular Therapy, 2015, 23, S108-S109.	3.7	0
471	Aptamer Sequence Deconvolution through Microarray Technology. Biophysical Journal, 2015, 108, 328a.	0.2	0
472	Editorial. Biomaterials, 2015, 36, 5.	5.7	0
473	Comparative Study of Disc Degeneration According to the Annulotomy Methodology: In Vivo Animal Study. Journal of Korean Society of Spine Surgery, 2003, 10, 8.	0.3	0
474	Tissue Compatibility of Interfacial Polyelectrolyte Complexation Fibrous Scaffold: Evaluation of Blood Compatibility and Biocompatibility. Tissue Engineering, 2006, .	4.9	0
475	Tracheal Tissue Engineering. , 2007, , 33-1-33-19.		0
476	Poly(α-hydroxy acids): carriers for bone morphogenetic proteins. , 1996, , 139-146.		0
477	Drug Delivery Related to Tissue Engineering. , 1997, , 97-119.		0
478	Determination of Cellular Uptake and Endocytic Pathways. Bio-protocol, 2019, 9, e3169.	0.2	0