Ari Barzilai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6287650/publications.pdf Version: 2024-02-01

Δρι Βλοσιιλι

#	Article	IF	CITATIONS
1	Dysfunction of cerebellar microglia in <scp>Ataxiaâ€ŧelangiectasia</scp> . Glia, 2022, 70, 536-557.	4.9	12
2	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
3	Inhibition of Sema-3A Promotes Cell Migration, Axonal Growth, and Retinal Ganglion Cell Survival. Translational Vision Science and Technology, 2021, 10, 16.	2.2	2
4	NBS1 interacts with Notch signaling in neuronal homeostasis. Nucleic Acids Research, 2020, 48, 10924-10939.	14.5	13
5	Toward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation. Scientific Reports, 2020, 10, 7512.	3.3	22
6	Calcium imaging, MEA recordings, and immunostaining images dataset of neuron-astrocyte networks in culture under the effect of norepinephrine. GigaScience, 2019, 8, .	6.4	5
7	Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype. DNA Repair, 2018, 72, 10-17.	2.8	15
8	Activity changes in neuron-astrocyte networks in culture under the effect of norepinephrine. PLoS ONE, 2018, 13, e0203761.	2.5	20
9	Astrocytes restore connectivity and synchronization in dysfunctional cerebellar networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8025-8030.	7.1	23
10	Genome instability: Linking ageing and brain degeneration. Mechanisms of Ageing and Development, 2017, 161, 4-18.	4.6	11
11	Astrocytes from old Alzheimer's disease mice are impaired in AÎ ² uptake and in neuroprotection. Neurobiology of Disease, 2016, 96, 84-94.	4.4	85
12	Connecting Malfunctioning Clial Cells and Brain Degenerative Disorders. Genomics, Proteomics and Bioinformatics, 2016, 14, 155-165.	6.9	28
13	Design, Surface Treatment, Cellular Plating, and Culturing of Modular Neuronal Networks Composed of Functionally Inter-connected Circuits. Journal of Visualized Experiments, 2015, , .	0.3	6
14	An evolutionary perspective on signaling peptides: toxic peptides are selected to provide information regarding the processing of the propeptide, which represents the phenotypic state of the signaling cell. F1000Research, 2015, 4, 512.	1.6	0
15	Clique of Functional Hubs Orchestrates Population Bursts in Developmentally Regulated Neural Networks. PLoS Computational Biology, 2014, 10, e1003823.	3.2	32
16	Genome maintenance in the nervous system; insight into the role of the DNA damage response in brain development and disease. DNA Repair, 2013, 12, 541-542.	2.8	6
17	The interrelations between malfunctioning DNA damage response (DDR) and the functionality of the neuro-glio-vascular unit. DNA Repair, 2013, 12, 543-557.	2.8	11
18	The Role of the Neuro-Astro-Vascular Unit in the Etiology of Ataxia Telangiectasia. Frontiers in Pharmacology, 2012, 3, 157.	3.5	13

Ari Barzilai

#	Article	IF	CITATIONS
19	Malfunctioning DNA Damage Response (DDR) Leads to the Degeneration of Nigro-Striatal Pathway in Mouse Brain. Journal of Molecular Neuroscience, 2012, 46, 554-568.	2.3	15
20	A Role for Vascular Deficiency in Retinal Pathology in a Mouse Model of Ataxia-Telangiectasia. American Journal of Pathology, 2011, 179, 1533-1541.	3.8	22
21	Reduced Synchronization Persistence in Neural Networks Derived from Atm-Deficient Mice. Frontiers in Neuroscience, 2011, 5, 46.	2.8	13
22	The neuro-glial-vascular interrelations in genomic instability symptoms. Mechanisms of Ageing and Development, 2011, 132, 395-404.	4.6	15
23	Astrocyte Dysfunction Associated with Cerebellar Attrition in a Nijmegen Breakage Syndrome Animal Model. Journal of Molecular Neuroscience, 2011, 45, 202-211.	2.3	15
24	Investigation of the Functional Link between ATM and NBS1 in the DNA Damage Response in the Mouse Cerebellum. Journal of Biological Chemistry, 2011, 286, 15361-15376.	3.4	24
25	DNA damage, neuronal and glial cell death and neurodegeneration. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1371-1381.	4.9	49
26	Conditional inactivation of the NBS1 gene in the mouse central nervous system leads to neurodegeneration and disorganization of the visual system. Experimental Neurology, 2009, 218, 24-32.	4.1	21
27	The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair, 2008, 7, 1010-1027.	2.8	124
28	The neurological phenotype of ataxia-telangiectasia: Solving a persistent puzzle. DNA Repair, 2008, 7, 1028-1038.	2.8	118
29	MRI evidence of white matter damage in a mouse model of Nijmegen breakage syndrome. Experimental Neurology, 2008, 209, 181-191.	4.1	29
30	The Contribution of the DNA Damage Response to Neuronal Viability. Antioxidants and Redox Signaling, 2007, 9, 211-218.	5.4	59
31	Examination of cellular and molecular events associated with optic nerve axotomy. Glia, 2006, 54, 545-556.	4.9	25
32	Nuclear Ataxia-Telangiectasia Mutated (ATM) Mediates the Cellular Response to DNA Double Strand Breaks in Human Neuron-like Cells. Journal of Biological Chemistry, 2006, 281, 17482-17491.	3.4	65
33	Analysis of the Ataxia Telangiectasia Mutated-Mediated DNA Damage Response in Murine Cerebellar Neurons. Journal of Neuroscience, 2006, 26, 7767-7774.	3.6	40
34	DNA damage responses to oxidative stress. DNA Repair, 2004, 3, 1109-1115.	2.8	615
35	Molecular mechanisms of selective dopaminergic neuronal death in Parkinson's disease. Trends in Molecular Medicine, 2003, 9, 126-132.	6.7	131
36	The molecular mechanisms of dopamine toxicity. Advances in Neurology, 2003, 91, 73-82.	0.8	15

Ari Barzilai

#	Article	IF	CITATIONS
37	Anti-semaphorin 3A Antibodies Rescue Retinal Ganglion Cells from Cell Death following Optic Nerve Axotomy. Journal of Biological Chemistry, 2002, 277, 49799-49807.	3.4	95
38	Accumulation of DNA Damage and Reduced Levels of Nicotine Adenine Dinucleotide in the Brains of Atm-deficient Mice. Journal of Biological Chemistry, 2002, 277, 602-608.	3.4	85
39	ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair, 2002, 1, 3-25.	2.8	333
40	Distinctly Phosphorylated Neurofilaments in Different Classes of Neurons. Journal of Neurochemistry, 2002, 62, 770-776.	3.9	15
41	Activation of nuclear transcription factor kappa B (NF-κB) is essential for dopamine-induced apoptosis in PC12 cells. Journal of Neurochemistry, 2001, 77, 391-398.	3.9	86
42	Semaphorins as Mediators of Neuronal Apoptosis. Journal of Neurochemistry, 2001, 73, 961-971.	3.9	134
43	ls there a rationale for neuroprotection against dopamine toxicity in Parkinson's disease?. Cellular and Molecular Neurobiology, 2001, 21, 215-235.	3.3	65
44	The involvement of p53 in dopamine-induced apoptosis of cerebellar granule neurons and leukemic cells overexpressing p53. Cellular and Molecular Neurobiology, 1999, 19, 261-276.	3.3	46
45	Expression of cell cycle-related genes during neuronal apoptosis: is there a distinct pattern?. Neurochemical Research, 1998, 23, 767-777.	3.3	40
46	Levodopa Toxicity and Apoptosis. Annals of Neurology, 1998, 44, S149-54.	5.3	70
47	Monoamine-induced apoptotic neuronal cell death. Cellular and Molecular Neurobiology, 1997, 17, 101-118.	3.3	63
48	Levodopa induces apoptosis in cultured neuronal cells—A possible accelerator of nigrostriatal degeneration in Parkinson's disease?. Movement Disorders, 1997, 12, 17-23.	3.9	90
49	Biochemical and Temporal Analysis of Events Associated with Apoptosis Induced by Lowering the Extracellular Potassium Concentration in Mouse Cerebellar Granule Neurons. Journal of Neurochemistry, 1997, 68, 750-759.	3.9	79
50	Two Waves of Cyclin B and Proliferating Cell Nuclear Antigen Expression During Dopamineâ€Triggered Neuronal Apoptosis. Journal of Neurochemistry, 1997, 69, 539-549.	3.9	40