
Tianming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6287378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling functional difference between gyri and sulci within intrinsic connectivity networks. Cerebral Cortex, 2023, 33, 933-947.	2.9	8
2	Functional Brain Networks Underlying Auditory Saliency During Naturalistic Listening Experience. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 156-163.	3.8	2
3	Evolutional Neural Architecture Search for Optimization of Spatiotemporal Brain Network Decomposition. IEEE Transactions on Biomedical Engineering, 2022, 69, 624-634.	4.2	15
4	NAS-optimized topology-preserving transfer learning for differentiating cortical folding patterns. Medical Image Analysis, 2022, 77, 102316.	11.6	6
5	Follow My Eye: Using Gaze to Supervise Computer-Aided Diagnosis. IEEE Transactions on Medical Imaging, 2022, 41, 1688-1698.	8.9	19
6	Control energy assessment of spatial interactions among <scp>macroâ€scale</scp> brain networks. Human Brain Mapping, 2022, 43, 2181-2203.	3.6	5
7	COVIDSum: A linguistically enriched SciBERT-based summarization model for COVID-19 scientific papers. Journal of Biomedical Informatics, 2022, 127, 103999.	4.3	10
8	Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction. Annual Review of Biomedical Engineering, 2022, 24, 179-201.	12.3	50
9	Gyral peaks: Novel gyral landmarks in developing macaque brains. Human Brain Mapping, 2022, 43, 4540-4555.	3.6	8
10	Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs). Medical Image Analysis, 2022, 80, 102518.	11.6	12
11	Learning brain representation using recurrent Wasserstein generative adversarial net. Computer Methods and Programs in Biomedicine, 2022, 223, 106979.	4.7	7
12	Gyral-sulcal contrast in intrinsic functional brain networks across task performances. Brain Imaging and Behavior, 2021, 15, 1483-1498.	2.1	6
13	Deep Variational Autoencoder for Mapping Functional Brain Networks. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 841-852.	3.8	13
14	Marmoset Brain ISH Data Revealed Molecular Difference Between Cortical Folding Patterns. Cerebral Cortex, 2021, 31, 1660-1674.	2.9	2
15	Role of axonal fibers in the cortical folding patterns: A tale of variability and regularity. Brain Multiphysics, 2021, 2, 100029.	2.3	20
16	Multi-head GAGNN: A Multi-head Guided Attention Graph Neural Network for Modeling Spatio-temporal Patterns of Holistic Brain Functional Networks. Lecture Notes in Computer Science, 2021, , 564-573.	1.3	2
17	Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior. Psychoradiology, 2021, 1, 23-41.	2.3	33
18	Simultaneous spatial-temporal decomposition for connectome-scale brain networks by deep sparse recurrent auto-encoder. Brain Imaging and Behavior, 2021, 15, 2646-2660.	2.1	10

#	Article	IF	CITATIONS
19	Grand Challenges in Al in Radiology. Frontiers in Radiology, 2021, 1, .	2.0	3
20	Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition. Medical Image Analysis, 2021, 69, 101974.	11.6	29
21	Modeling Hierarchical Spatial and Temporal Patterns of Naturalistic fMRI Volume via Volumetric Deep Belief Network with Neural Architecture Search. , 2021, , .		2
22	Eliminating Indefiniteness of Clinical Spectrum for Better Screening COVID-19. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1347-1357.	6.3	25
23	Exploratory Investigation of Dose-Linear Energy Transfer (LET) Volume Histogram (DLVH) for Adverse Events Study in Intensity Modulated Proton Therapy (IMPT). International Journal of Radiation Oncology Biology Physics, 2021, 110, 1189-1199.	0.8	15
24	Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder. Journal of Neural Engineering, 2021, 18, 0460b6.	3.5	15
25	Deep Fusion of Brain Structure-Function in Mild Cognitive Impairment. Medical Image Analysis, 2021, 72, 102082.	11.6	37
26	Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study. Biophysical Journal, 2021, 120, 3697-3708.	0.5	4
27	Mechanism Exploration of 3-Hinge Gyral Formation and Pattern Recognition. Cerebral Cortex Communications, 2021, 2, tgab044.	1.6	7
28	Exploring the Functional Difference of Gyri/Sulci via Hierarchical Interpretable Autoencoder. Lecture Notes in Computer Science, 2021, , 701-709.	1.3	2
29	A Guided Attention 4D Convolutional Neural Network for Modeling Spatio-Temporal Patterns of Functional Brain Networks. Lecture Notes in Computer Science, 2021, , 350-361.	1.3	2
30	A Framework of Al-Based Approaches to Improving eHealth Literacy and Combating Infodemic. Frontiers in Public Health, 2021, 9, 755808.	2.7	20
31	The effects of lutein and zeaxanthin on resting state functional connectivity in older Caucasian adults: a randomized controlled trial. Brain Imaging and Behavior, 2020, 14, 668-681.	2.1	9
32	Discovering and characterizing dynamic functional brain networks in task FMRI. Brain Imaging and Behavior, 2020, 14, 1660-1673.	2.1	3
33	Four-Dimensional Modeling of fMRI Data via Spatio–Temporal Convolutional Neural Networks (ST-CNNs). IEEE Transactions on Cognitive and Developmental Systems, 2020, 12, 451-460.	3.8	28
34	Modeling Brain Diverse and Complex Hemodynamic Response Patterns via Deep Recurrent Autoencoder. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12, 733-743.	3.8	9
35	Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network. IEEE Transactions on Biomedical Engineering, 2020, 67, 1739-1748.	4.2	22
36	Task fMRI Guided Fiber Clustering via a Deep Clustering Method. , 2020		3

36 Task fMRI Guided Fiber Clustering via a Deep Clustering Method. , 2020, , .

#	Article	IF	CITATIONS
37	Modeling task-based fMRI data via deep belief network with neural architecture search. Computerized Medical Imaging and Graphics, 2020, 83, 101747.	5.8	24
38	Optimize CNN Model for FMRI Signal Classification Via Adanet-Based Neural Architecture Search. , 2020, , .		6
39	Cortical 3-hinges could serve as hubs in cortico-cortical connective network. Brain Imaging and Behavior, 2020, 14, 2512-2529.	2.1	16
40	Hierarchical Organization of Functional Brain Networks Revealed by Hybrid Spatiotemporal Deep Learning. Brain Connectivity, 2020, 10, 72-82.	1.7	16
41	Supervised Brain Network Learning Based on Deep Recurrent Neural Networks. IEEE Access, 2020, 8, 69967-69978.	4.2	3
42	Identifying Cross-individual Correspondences of 3-hinge Gyri. Medical Image Analysis, 2020, 63, 101700.	11.6	11
43	Exploring Functional Difference Between Gyri and Sulci via Region-Specific 1D Convolutional Neural Networks. Lecture Notes in Computer Science, 2020, , 250-259.	1.3	6
44	Identifying Hierarchical Individual Functional Network under Naturalistic Paradigm via Two-stage DBN with Neural Architecture Search. , 2020, , .		1
45	Neural Architecture Search for Optimization of Spatial-Temporal Brain Network Decomposition. Lecture Notes in Computer Science, 2020, , 377-386.	1.3	2
46	Spatiotemporal Attention Autoencoder (STAAE) for ADHD Classification. Lecture Notes in Computer Science, 2020, , 508-517.	1.3	10
47	A Novel fMRI Representation Learning Framework with GAN. Lecture Notes in Computer Science, 2020, , 21-29.	1.3	2
48	Discovering Functional Brain Networks with 3D Residual Autoencoder (ResAE). Lecture Notes in Computer Science, 2020, , 498-507.	1.3	3
49	Experimental Comparisons of Sparse Dictionary Learning and Independent Component Analysis for Brain Network Inference From fMRI Data. IEEE Transactions on Biomedical Engineering, 2019, 66, 289-299.	4.2	54
50	Deep Neural Networks for Exploration of Transcriptome of Adult Mouse Brain. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1.	3.0	3
51	Exploring Intrinsic Functional Differences of Gyri, Sulci and 2-Hinge, 3-Hinge Joints on Cerebral Cortex. , 2019, , .		4
52	A Two-Stage DBN-Based Method to Exploring Functional Brain Networks in Naturalistic Paradigm FMRI. , 2019, , .		6
53	Explore the Hierarchical Auditory Information Processing Via Deep Convolutional Autoencoder. , 2019, , .		1
54	Training a Camera to Perform Long-Distance Eye Tracking by Another Eye-Tracker. IEEE Access, 2019, 7, 155313-155324.	4.2	13

#	Article	IF	CITATIONS
55	A Task Performance-guided Model of Functional Networks Identification. , 2019, , .		3
56	Two-Stage Spatial Temporal Deep Learning Framework For Functional Brain Network Modeling. , 2019, ,		7
57	Simultaneous Spatial-Temporal Decomposition of Connectome-Scale Brain Networks by Deep Sparse Recurrent Auto-Encoders. Lecture Notes in Computer Science, 2019, , 579-591.	1.3	17
58	Revealing hemodynamic heterogeneity of gliomas based on signal profile features of dynamic susceptibility contrast-enhanced MRI. NeuroImage: Clinical, 2019, 23, 101864.	2.7	8
59	Temporal Variability of Cortical Gyral-Sulcal Resting State Functional Activity Correlates With Fluid Intelligence. Frontiers in Neural Circuits, 2019, 13, 36.	2.8	17
60	Intelligence moderates the relationship between age and inter-connectivity of resting state networks in older adults. Neurobiology of Aging, 2019, 78, 121-129.	3.1	6
61	Discovering hierarchical common brain networks via multimodal deep belief network. Medical Image Analysis, 2019, 54, 238-252.	11.6	15
62	Joint representation of connectome-scale structural and functional profiles for identification of consistent cortical landmarks in macaque brain. Brain Imaging and Behavior, 2019, 13, 1427-1443.	2.1	3
63	The Cerebral Cortex is Bisectionally Segregated into Two Fundamentally Different Functional Units of Gyri and Sulci. Cerebral Cortex, 2019, 29, 4238-4252.	2.9	28
64	Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 2515-2525.	6.3	17
65	Recognizing Brain States Using Deep Sparse Recurrent Neural Network. IEEE Transactions on Medical Imaging, 2019, 38, 1058-1068.	8.9	39
66	Deep Learning Models Unveiled Functional Difference Between Cortical Gyri and Sulci. IEEE Transactions on Biomedical Engineering, 2019, 66, 1297-1308.	4.2	18
67	Functional Brain Connectivity Revealed by Sparse Coding of Large-Scale Local Field Potential Dynamics. Brain Topography, 2019, 32, 255-270.	1.8	6
68	Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics. Neurocomputing, 2019, 325, 20-30.	5.9	27
69	A Distributed Computing Platform for fMRI Big Data Analytics. IEEE Transactions on Big Data, 2019, 5, 109-119.	6.1	10
70	Identify Hierarchical Structures from Task-Based fMRI Data via Hybrid Spatiotemporal Neural Architecture Search Net. Lecture Notes in Computer Science, 2019, , 745-753.	1.3	13
71	Identification of Abnormal Cortical 3-Hinge Folding Patterns on Autism Spectral Brains. Lecture Notes in Computer Science, 2019, , 57-65.	1.3	2
72	Exploring Brain Hemodynamic Response Patterns via Deep Recurrent Autoencoder. Lecture Notes in Computer Science, 2019, , 66-74.	1.3	0

#	Article	IF	CITATIONS
73	Multi-view Graph Matching of Cortical Landmarks. Lecture Notes in Computer Science, 2019, , 84-92.	1.3	0
74	3D Convolutional Long-Short Term Memory Network for Spatiotemporal Modeling of fMRI Data. Lecture Notes in Computer Science, 2019, , 75-83.	1.3	0
75	Latent source mining in FMRI via restricted Boltzmann machine. Human Brain Mapping, 2018, 39, 2368-2380.	3.6	55
76	Decoding Auditory Saliency from Brain Activity Patterns during Free Listening to Naturalistic Audio Excerpts. Neuroinformatics, 2018, 16, 309-324.	2.8	14
77	Probabilistic Methods in Computational Neuroscience. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 535-536.	3.0	0
78	Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex. IEEE Transactions on Biomedical Engineering, 2018, 65, 1183-1192.	4.2	34
79	Learning to Predict Eye Fixations via Multiresolution Convolutional Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 392-404.	11.3	85
80	Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI. Brain Imaging and Behavior, 2018, 12, 743-757.	2.1	12
81	Joint representation of consistent structural and functional profiles for identification of common cortical landmarks. Brain Imaging and Behavior, 2018, 12, 728-742.	2.1	7
82	Functional brain networks reconstruction using group sparsity-regularized learning. Brain Imaging and Behavior, 2018, 12, 758-770.	2.1	2
83	Modeling Task fMRI Data Via Deep Convolutional Autoencoder. IEEE Transactions on Medical Imaging, 2018, 37, 1551-1561.	8.9	135
84	Automatic Recognition of fMRI-Derived Functional Networks Using 3-D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 2018, 65, 1975-1984.	4.2	71
85	Denser Growing Fiber Connections Induce 3-hinge Gyral Folding. Cerebral Cortex, 2018, 28, 1064-1075.	2.9	35
86	Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs. NeuroImage, 2018, 180, 350-369.	4.2	23
87	Large-Scale Circuitry Interactions Upon Earthquake Experiences Revealed by Recurrent Neural Networks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 2115-2125.	4.9	5
88	Characterizing task-evoked and intrinsic functional networks from task-based fMRI data via two-stage sparse dictionary learning. , 2018, , .		0
89	Identification of Species-Preserved Cortical Landmarks. Lecture Notes in Computer Science, 2018, , 89-97.	1.3	0
90	3D Deep Convolutional Neural Network Revealed the Value of Brain Network Overlap in Differentiating Autism Spectrum Disorder from Healthy Controls. Lecture Notes in Computer Science, 2018, , 172-180.	1.3	14

#	Article	lF	CITATIONS
91	Identifying Brain Networks of Multiple Time Scales via Deep Recurrent Neural Network. Lecture Notes in Computer Science, 2018, , 284-292.	1.3	7
92	A Cortical Folding Pattern-Guided Model of Intrinsic Functional Brain Networks in Emotion Processing. Frontiers in Neuroscience, 2018, 12, 575.	2.8	21
93	Exploring 3â€hinge gyral folding patterns among HCP Q3 868 human subjects. Human Brain Mapping, 2018, 39, 4134-4149.	3.6	21
94	Joint representation of cortical folding, structural connectivity and functional networks. , 2018, , .		2
95	Latent source mining of fMRI data via deep belief network. , 2018, , .		2
96	A novel framework for analyzing cortical folding patterns based on sulcal baselines and gyral crestlines. , 2018, , .		3
97	Optimization of macaque brain DMRI connectome by neuron tracing and myelin stain data. Computerized Medical Imaging and Graphics, 2018, 69, 9-20.	5.8	4
98	A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data. Frontiers in Neuroinformatics, 2018, 12, 17.	2.5	6
99	Modeling task fMRI data via mixture of deep expert networks. , 2018, , .		10
100	Neural Coding of Appetitive Food Experiences in the Amygdala. Neurobiology of Learning and Memory, 2018, 155, 261-275.	1.9	14
101	Modeling resting state fMRI data via longitudinal supervised stochastic coordinate coding. , 2018, , .		4
102	Exploring intrinsic networks and their interactions using group wise temporal sparse coding. , 2018, , .		6
103	Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization. Medical Image Analysis, 2018, 47, 111-126.	11.6	16
104	Modeling 4D fMRI Data via Spatio-Temporal Convolutional Neural Networks (ST-CNN). Lecture Notes in Computer Science, 2018, , 181-189.	1.3	28
105	Decoding power-spectral profiles from FMRI brain activities during naturalistic auditory experience. Brain Imaging and Behavior, 2017, 11, 253-263.	2.1	19
106	Task fMRI data analysis based on supervised stochastic coordinate coding. Medical Image Analysis, 2017, 38, 1-16.	11.6	41
107	Transcriptome Architecture of Adult Mouse Brain Revealed by Sparse Coding of Genome-Wide In Situ Hybridization Images. Neuroinformatics, 2017, 15, 285-295.	2.8	8
108	3-D functional brain network classification using Convolutional Neural Networks. , 2017, , .		6

3-D functional brain network classification using Convolutional Neural Networks. , 2017, , . 108

7

#	Article	IF	CITATIONS
109	Dynamic brain connectivity is a better predictor of PTSD than static connectivity. Human Brain Mapping, 2017, 38, 4479-4496.	3.6	102
110	Mechanisms of circumferential gyral convolution in primate brains. Journal of Computational Neuroscience, 2017, 42, 217-229.	1.0	22
111	Connectome-scale functional intrinsic connectivity networks in macaques. Neuroscience, 2017, 364, 1-14.	2.3	16
112	Gyral net: A new representation of cortical folding organization. Medical Image Analysis, 2017, 42, 14-25.	11.6	27
113	Elucidating functional differences between cortical gyri and sulci via sparse representation HCP grayordinate fMRI data. Brain Research, 2017, 1672, 81-90.	2.2	20
114	Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder. Medical Image Analysis, 2017, 42, 200-211.	11.6	36
115	Exploring human brain activation via nested sparse coding and functional operators. , 2017, , .		2
116	Group-wise sparse representation of resting-state fMRI data for better understanding of schizophrenia. , 2017, , .		2
117	Discover mouse gene coexpression landscapes using dictionary learning and sparse coding. Brain Structure and Function, 2017, 222, 4253-4270.	2.3	7
118	Predicting cortical 3-hinge locations via structural connective features. , 2017, , .		1
119	Template-guided Functional Network Identification via Supervised Dictionary Learning. , 2017, , .		0
120	A novel framework for groupwise registration of fMRI images based on common functional networks. , 2017, 2017, 485-489.		2
121	Inter-subject fMRI registration based on functional networks. , 2017, , .		1
122	Decoding dynamic auditory attention during naturalistic experience. , 2017, , .		3
123	FMRI data classification based on hybrid temporal and spatial sparse representation. , 2017, , .		5
124	Fast assembling of neuron fragments in serial 3D sections. Brain Informatics, 2017, 4, 183-186.	3.0	9
125	Commonly preserved and species-specific gyral folding patterns across primate brains. Brain Structure and Function, 2017, 222, 2127-2141.	2.3	30
126	Assessing the effects of cocaine dependence and pathological gambling using group-wise sparse representation of natural stimulus FMRI data. Brain Imaging and Behavior, 2017, 11, 1179-1191.	2.1	6

#	Article	IF	CITATIONS
127	Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex. Frontiers in Computational Neuroscience, 2017, 11, 76.	2.1	19
128	Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury. Neural Plasticity, 2016, 2016, 1-13.	2.2	50
129	Brain Computation Is Organized via Power-of-Two-Based Permutation Logic. Frontiers in Systems Neuroscience, 2016, 10, 95.	2.5	27
130	Implementing dictionary learning in Apache Flink, Or: How I learned to relax and love iterations. , 2016, , .		1
131	Distributed rank-1 dictionary learning: Towards fast and scalable solutions for fMRI big data analytics. , 2016, , .		2
132	A data-driven method to study brain structural connectivities via joint analysis of microarray data and dMRI data. , 2016, , .		1
133	Exploring auditory network composition during free listening to audio excerpts via group-wise sparse representation. , 2016, , .		0
134	Scalable Fast Rank-1 Dictionary Learning for fMRI Big Data Analysis. , 2016, , .		10
135	Connectome-scale assessment of structural and functional connectivity in mild traumatic brain injury at the acute stage. NeuroImage: Clinical, 2016, 12, 100-115.	2.7	35
136	Group-wise sparse representation of brain states reveal network abnormalities in mild traumatic brain injury. , 2016, , .		2
137	Identifying group-wise consistent sub-networks via spatial sparse representation of natural stimulus FMRI data. , 2016, , .		1
138	Modeling functional network dynamics via multi-scale dictionary learning and network continuums. , 2016, , .		0
139	Multple-demand system identification and characterization via sparse representations of fMRI data. , 2016, , .		7
140	Latent source mining in FMRI data via deep neural network. , 2016, , .		17
141	Identifying autism biomarkers in default mode network using sparse representation of resting-state fMRI data. , 2016, , .		3
142	Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder. NeuroImage: Clinical, 2016, 12, 23-33.	2.7	27
143	Mechanism of Consistent Gyrus Formation: an Experimental and Computational Study. Scientific Reports, 2016, 6, 37272.	3.3	20
144	Signal sampling for efficient sparse representation of resting state FMRI data. Brain Imaging and Behavior, 2016, 10, 1206-1222.	2.1	11

#	Article	IF	CITATIONS
145	Group-wise consistent cortical parcellation based on connectional profiles. Medical Image Analysis, 2016, 32, 32-45.	11.6	9
146	Predicting Movie Trailer Viewer's "Like/Dislike―via Learned Shot Editing Patterns. IEEE Transactions on Affective Computing, 2016, 7, 29-44.	8.3	13
147	Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations. Brain Imaging and Behavior, 2016, 10, 21-32.	2.1	68
148	Role of mechanical factors in cortical folding development. Physical Review E, 2015, 92, 032701.	2.1	39
149	Cortical Folding Pattern and its Consistency Induced by Biological Growth. Scientific Reports, 2015, 5, 14477.	3.3	41
150	Characterizing and differentiating task-based and resting state FMRI signals via two-stage dictionary learning. , 2015, , .		0
151	Multiscale and multimodal fusion of tract-tracing and DTI-derived fibers in macaque brains. , 2015, , .		0
152	Sparse representation of <scp>HC<i>P</i></scp> grayordinate data reveals novel functional architecture of cerebral cortex. Human Brain Mapping, 2015, 36, 5301-5319.	3.6	65
153	Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness. Human Brain Mapping, 2015, 36, 5183-5195.	3.6	32
154	Construction of Multi-Scale Consistent Brain Networks: Methods and Applications. PLoS ONE, 2015, 10, e0118175.	2.5	5
155	Allen mouse brain atlases reveal different neural connection and gene expression patterns in cerebellum gyri and sulci. Brain Structure and Function, 2015, 220, 2691-2703.	2.3	25
156	Interactive exemplar-based segmentation toolkit for biomedical image analysis. , 2015, , .		5
157	Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part I. IEEE Transactions on Autonomous Mental Development, 2015, 7, 158-161.	1.6	0
158	Sparsity-Constrained fMRI Decoding of Visual Saliency in Naturalistic Video Streams. IEEE Transactions on Autonomous Mental Development, 2015, 7, 65-75.	1.6	15
159	Deriving ADHD biomarkers with sparse coding based network analysis. , 2015, , .		6
160	Dynamic Bayesian brain network partition and connectivity change point detection. , 2015, , .		0
161	Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses. Journal of Neurotrauma, 2015, 32, 1031-1045.	3.4	122
162	Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment. Brain Imaging and Behavior, 2015, 9, 663-677.	2.1	12

#	Article	IF	CITATIONS
163	Anatomy-Guided Dense Individualized and Common Connectivity-Based Cortical Landmarks (A-DICCCOL). IEEE Transactions on Biomedical Engineering, 2015, 62, 1108-1119.	4.2	12
164	Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data. NeuroImage, 2015, 115, 202-213.	4.2	43
165	Assessing effects of prenatal alcohol exposure using group-wise sparse representation of fMRI data. Psychiatry Research - Neuroimaging, 2015, 233, 254-268.	1.8	32
166	Holistic Atlases of Functional Networks and Interactions Reveal Reciprocal Organizational Architecture of Cortical Function. IEEE Transactions on Biomedical Engineering, 2015, 62, 1120-1131.	4.2	134
167	Supervised Dictionary Learning for Inferring Concurrent Brain Networks. IEEE Transactions on Medical Imaging, 2015, 34, 2036-2045.	8.9	61
168	Signal sampling for efficient sparse representation of resting state FMRI data. , 2015, , .		3
169	SmartTracing: self-learning-based Neuron reconstruction. Brain Informatics, 2015, 2, 135-144.	3.0	67
170	Group-wise consistent sulcal fundi segmentation based on DMRI-derived ODF features. , 2015, , .		0
171	Arousal Recognition Using Audio-Visual Features and FMRI-Based Brain Response. IEEE Transactions on Affective Computing, 2015, 6, 337-347.	8.3	29
172	Decoding Semantics Categorization during Natural Viewing of Video Streams. IEEE Transactions on Autonomous Mental Development, 2015, 7, 201-210.	1.6	6
173	HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI). Brain Informatics, 2015, 2, 225-238.	3.0	13
174	Sparse representation of whole-brain fMRI signals for identification of functional networks. Medical Image Analysis, 2015, 20, 112-134.	11.6	181
175	Characterizing and Differentiating Brain State Dynamics via Hidden Markov Models. Brain Topography, 2015, 28, 666-679.	1.8	61
176	Sparse representation of working memory processes based on fMRI data. , 2014, , .		0
177	Group-wise consistent cortical parcellation based on DTI-derived connectional profiles. , 2014, , .		1
178	Mathematical Approaches in Advanced Control Theories 2013. Journal of Applied Mathematics, 2014, 2014, 1-2.	0.9	0
179	Evolutionarily-preserved consistent gyral folding patterns across primate brains. , 2014, , .		7

180 Group-wise connection activation detection based on DICCCOL. , 2014, , .

0

#	Article	IF	CITATIONS
181	Learning fMRI-guided predictor of video shot changes. , 2014, , .		1
182	Inferring functional interaction and transition patterns via dynamic bayesian variable partition models. Human Brain Mapping, 2014, 35, 3314-3331.	3.6	34
183	Merging Neuroimaging and Multimedia: Methods, Opportunities, and Challenges. IEEE Transactions on Human-Machine Systems, 2014, 44, 270-280.	3.5	8
184	Integrating group-wise functional brain activities via point processes. , 2014, , .		4
185	Exploring functional brain dynamics via a Bayesian connectivity change point model. , 2014, , .		9
186	Group-wise optimization and individualized prediction of structural connectomes. , 2014, , .		1
187	A functional model of cortical gyri and sulci. Brain Structure and Function, 2014, 219, 1473-1491.	2.3	53
188	Predictive models of resting state networks for assessment of altered functional connectivity in mild cognitive impairment. Brain Imaging and Behavior, 2014, 8, 542-557.	2.1	7
189	Fusing DTI and fMRI data: A survey of methods and applications. NeuroImage, 2014, 102, 184-191.	4.2	108
190	Exploring consistent functional brain networks during free viewing of videos via sparse representation. , 2014, , .		1
191	Dynamic network partition via Bayesian connectivity bi-partition change point model. , 2014, , .		2
192	Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Human Brain Mapping, 2014, 35, 1761-1778.	3.6	135
193	A linear model for characterization of synchronization frequencies of neural networks. Cognitive Neurodynamics, 2014, 8, 55-69.	4.0	4
194	Generalized fMRI activation detection via Bayesian magnitude change point model. , 2014, , .		6
195	Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model. , 2014, , .		2
196	Discovering network-level functional interactions from working memory fMRI data. , 2014, , .		0
197	Connectomics signature for characterizaton of mild cognitive impairment and schizophrenia. , 2014, 2014, 325-328.		5
198	Connectome-scale assessments of structural and functional connectivity in MCI. Human Brain Mapping, 2014, 35, 2911-2923.	3.6	65

4

#	Article	IF	CITATIONS
199	Encoding brain network response to free viewing of videos. Cognitive Neurodynamics, 2014, 8, 389-397.	4.0	7
200	Group-Wise FMRI Activation Detection on DICCCOL Landmarks. Neuroinformatics, 2014, 12, 513-534.	2.8	3
201	Atomic dynamic functional interaction patterns for characterization of ADHD. Human Brain Mapping, 2014, 35, 5262-5278.	3.6	32
202	Identifying and Characterizing Resting State Networks in Temporally Dynamic Functional Connectomes. Brain Topography, 2014, 27, 747-765.	1.8	11
203	Characterization of U-shape streamline fibers: Methods and applications. Medical Image Analysis, 2014, 18, 795-807.	11.6	65
204	Interactive object-based image retrieval and annotation on iPad. Multimedia Tools and Applications, 2014, 72, 2275-2297.	3.9	9
205	Connectomics signatures of prenatal cocaine exposure affected adolescent brains. Human Brain Mapping, 2013, 34, 2494-2510.	3.6	39
206	Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions. Neuroinformatics, 2013, 11, 301-317.	2.8	11
207	On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus. Neurobiology of Learning and Memory, 2013, 105, 200-210.	1.9	22
208	Characterization of task-free and task-performance brain states via functional connectome patterns. Medical Image Analysis, 2013, 17, 1106-1122.	11.6	30
209	Identifying functional networks via sparse coding of whole brain FMRI signals. , 2013, , .		6
210	Activated cliques: Network-based activation detection in task-based FMRI. , 2013, , .		1
211	Group-wise change point detection in task FMRI data by Bayesian methods. , 2013, , .		1
212	Resting State fMRI-guided Fiber Clustering: Methods and Applications. Neuroinformatics, 2013, 11, 119-133.	2.8	18
213	Coevolution of Gyral Folding and Structural Connection Patterns in Primate Brains. Cerebral Cortex, 2013, 23, 1208-1217.	2.9	74
214	Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis. Neuroinformatics, 2013, 11, 193-210.	2.8	26
215	Predicting cortical ROIs via joint modeling of anatomical and connectional profiles. Medical Image Analysis, 2013, 17, 601-615.	11.6	2

216 Data-driven evaluation of functional connectivity metrics. , 2013, , .

#	Article	IF	CITATIONS
217	Assessing regularity and variability of cortical folding patterns of dicccols. , 2013, , .		0
218	DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks. Cerebral Cortex, 2013, 23, 786-800.	2.9	153
219	A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain. International Journal of Biomedical Imaging, 2013, 2013, 1-8.	3.9	6
220	Grand Challenges in Mapping the Human Brain: NSF Workshop Report. IEEE Transactions on Biomedical Engineering, 2013, 60, 2983-2992.	4.2	62
221	Assessing Structural Organization and Functional Interaction in Gyral, Sulcal and Cortical Networks. Lecture Notes in Computer Science, 2013, , 9-17.	1.3	3
222	Inferring Group-Wise Consistent Multimodal Brain Networks via Multi-View Spectral Clustering. IEEE Transactions on Medical Imaging, 2013, 32, 1576-1586.	8.9	47
223	Identifying functional connectomics abnormality in attention deficit hyperactivity disorder. , 2013, , .		4
224	Construction of multi-scale brain networks via DICCCOL landmarks. , 2013, , .		4
225	Joint analysis of gyral folding and fiber shape patterns. , 2013, , .		9
226	An Object-Oriented Visual Saliency Detection Framework Based on Sparse Coding Representations. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23, 2009-2021.	8.3	96
227	Inferring functional network-based signatures via structurally-weighted LASSO model. , 2013, 2013, 970-973.		2
228	Modeling brain functional dynamics via hidden Markov models. , 2013, , .		11
229	Functional brain interactions during free viewing of video stream. , 2013, , .		Ο
230	Discovering common functional connectomics signatures. , 2013, , .		0
231	Identifying consistent brain networks via maximizing predictability of functional connectome from structural connectome. , 2013, , .		1
232	Sparse Representation of Group-Wise FMRI Signals. Lecture Notes in Computer Science, 2013, 16, 608-616.	1.3	9
233	Sparse Representation of Higher-Order Functional Interaction Patterns in Task-Based FMRI Data. Lecture Notes in Computer Science, 2013, 16, 626-634.	1.3	13
234	Identifying Group-Wise Consistent White Matter Landmarks via Novel Fiber Shape Descriptor. Lecture Notes in Computer Science, 2013, 16, 66-73.	1.3	6

#	Article	IF	CITATIONS
235	Anatomy-Guided Discovery of Large-Scale Consistent Connectivity-Based Cortical Landmarks. Lecture Notes in Computer Science, 2013, 16, 617-625.	1.3	0
236	Modeling Dynamic Functional Information Flows on Large-Scale Brain Networks. Lecture Notes in Computer Science, 2013, 16, 698-705.	1.3	3
237	Group-Wise FMRI Activation Detection on Corresponding Cortical Landmarks. Lecture Notes in Computer Science, 2013, 16, 665-673.	1.3	0
238	Predictive Models of Resting State Networks for Assessment of Altered Functional Connectivity in MCI. Lecture Notes in Computer Science, 2013, 16, 674-681.	1.3	1
239	Predicting Functional Cortical ROIs via DTI-Derived Fiber Shape Models. Cerebral Cortex, 2012, 22, 854-864.	2.9	97
240	Axonal Fiber Terminations Concentrate on Gyri. Cerebral Cortex, 2012, 22, 2831-2839.	2.9	116
241	Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles. NeuroImage, 2012, 59, 1382-1393.	4.2	61
242	Inferring consistent functional interaction patterns from natural stimulus FMRI data. NeuroImage, 2012, 61, 987-999.	4.2	32
243	Visual analytics of brain networks. NeuroImage, 2012, 61, 82-97.	4.2	31
244	Individual Functional ROI Optimization Via Maximization of Group-Wise Consistency of Structural and Functional Profiles. Neuroinformatics, 2012, 10, 225-242.	2.8	31
245	Increased cortico-subcortical functional connectivity in schizophrenia. Brain Imaging and Behavior, 2012, 6, 27-35.	2.1	40
246	Characterization of Task-Free/Task-Performance Brain States. Lecture Notes in Computer Science, 2012, 15, 237-245.	1.3	9
247	Group-Wise Consistent Parcellation of Gyri via Adaptive Multi-view Spectral Clustering of Fiber Shapes. Lecture Notes in Computer Science, 2012, 15, 271-279.	1.3	3
248	Complex span tasks and hippocampal recruitment during working memory. NeuroImage, 2011, 55, 773-787.	4.2	80
249	A few thoughts on brain ROIs. Brain Imaging and Behavior, 2011, 5, 189-202.	2.1	49
250	Fine granularity parcellation of gyrus via fiber shape and connectivity based features. , 2011, , .		2
251	Assessing graph models for description of brain networks. , 2011, , .		1
252	Assessing the dynamics on functional brain networks using spectral graphy theory. , 2011, , .		5

#	Article	IF	CITATIONS
253	Retrieving video shots in semantic brain imaging space using manifold-ranking. , 2011, , .		7
254	Brain state change detection via fiber-centered functional connectivity analysis. , 2011, , .		5
255	Detection of hairline mandibular fracture using max-flow min-cut and Kolmogorov-Smirnov distance. , 2011, , .		4
256	Discovering Dense and Consistent Landmarks in the Brain. Lecture Notes in Computer Science, 2011, 22, 97-110.	1.3	25
257	Resting State fMRI-Guided Fiber Clustering. Lecture Notes in Computer Science, 2011, 14, 149-156.	1.3	6
258	Assessing Regularity and Variability of Cortical Folding Patterns of Working Memory ROIs. Lecture Notes in Computer Science, 2011, 14, 318-326.	1.3	4
259	An automated pipeline for cortical sulcal fundi extraction. Medical Image Analysis, 2010, 14, 343-359.	11.6	44
260	A computational model of cerebral cortex folding. Journal of Theoretical Biology, 2010, 264, 467-478.	1.7	50
261	Joint analysis of fiber shape and cortical folding patterns. , 2010, , .		5
262	Automatic cortical surface parcellation based on fiber density information. , 2010, , .		12
263	Automated Cell Phase Classification for Zebrafish Fluorescence Microscope Images. , 2010, , .		2
264	Gyral folding pattern analysis via surface profiling. NeuroImage, 2010, 52, 1202-1214.	4.2	62
265	A hybrid approach to automatic clustering of white matter fibers. NeuroImage, 2010, 49, 1249-1258.	4.2	72
266	Cortical surface based identification of brain networks using high spatial resolution resting state FMRI data. , 2010, , .		23
267	Joint analysis of cortical folding pattern, thickness and fiber density using structural and DTI data. , 2010, , .		0
268	Direction field diffusion on cortical surface via graph cuts. , 2010, , .		1
269	A Dynamic Skull Model for Simulation of Cerebral Cortex Folding. Lecture Notes in Computer Science, 2010, 13, 412-419.	1.3	5
270	Review of methods for functional brain connectivity detection using fMRI. Computerized Medical Imaging and Graphics, 2009, 33, 131-139.	5.8	226

#	Article	IF	CITATIONS
271	Deformation invariant attribute vector for deformable registration of longitudinal brain MR images. Computerized Medical Imaging and Graphics, 2009, 33, 384-398.	5.8	4
272	Imaging informatics for personalised medicine: applications and challenges. International Journal of Functional Informatics and Personalised Medicine, 2009, 2, 125.	0.4	4
273	Bezier Control Points image: A novel shape representation approach for medical imaging. , 2009, 2009, 1094-1098.		1
274	Gyral Folding Pattern Analysis via Surface Profiling. Lecture Notes in Computer Science, 2009, 12, 313-320.	1.3	4
275	A Computational Model of Cerebral Cortex Folding. Lecture Notes in Computer Science, 2009, 12, 458-465.	1.3	3
276	Parametric Representation of Cortical Surface Folding Based on Polynomials. Lecture Notes in Computer Science, 2009, 12, 184-191.	1.3	13
277	An Automated Method for Cell Detection in Zebrafish. Neuroinformatics, 2008, 6, 5-21.	2.8	35
278	MR analysis of regional brain volume in adolescent idiopathic scoliosis: Neurological manifestation of a systemic disease. Journal of Magnetic Resonance Imaging, 2008, 27, 732-736.	3.4	42
279	Reconstruction of central cortical surface from brain MRI images: Method and application. NeuroImage, 2008, 40, 991-1002.	4.2	84
280	ZFIQ: a software package for zebrafish biology. Bioinformatics, 2008, 24, 438-439.	4.1	21
281	A Novel Method for Cortical Sulcal Fundi Extraction. Lecture Notes in Computer Science, 2008, 11, 270-278.	1.3	10
282	Diffusion Tensor Imaging Based Analysis of Neurological Disorders. , 2008, , 703-723.		0
283	Brain tissue segmentation based on DTI data. NeuroImage, 2007, 38, 114-123.	4.2	146
284	SEGMENTATION OF TOUCHING CELLS USING GRADIENT FLOW TRACKING. , 2007, , .		4
285	RECONSTRUCTION OF CENTRAL CORTICAL SURFACE FROM BRAIN MRI IMAGES: METHOD AND APPLICATION. , 2007, , .		2
286	A Quantitative Zebrafish Phenotyping Tool for Developmental Biology and Disease Modeling [Life Sciences]. IEEE Signal Processing Magazine, 2007, 24, 126-129.	5.6	9
287	Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nature Genetics, 2007, 39, 957-959.	21.4	284
288	76-Space analysis of grey matter diffusivity: Methods and applications. NeuroImage, 2006, 31, 51-65.	4.2	48

#	Article	IF	CITATIONS
289	Computerized image analysis for quantitative neuronal phenotyping in zebrafish. Journal of Neuroscience Methods, 2006, 153, 190-202.	2.5	30
290	76-Space Analysis of Grey Matter Diffusivity: Methods and Applications. Lecture Notes in Computer Science, 2005, 8, 148-155.	1.3	3
291	Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage, 2004, 22, 1790-1801.	4.2	114
292	Deformation Invariant Attribute Vector for 3D Image Registration: Method and Validation. , 0, , .		0
293	Brain Tissue Segmentation Based on DWI/DTI Data. , 0, , .		9
294	Least Square Conformal Mapping with Spring Energy. , 0, , .		0