Wooyul Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6286204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in levels of N-nitrosamine formed from amine-containing compounds during chloramination via photocatalytic pretreatment with immobilized TiO2: Effect of source water and pH. Journal of Hazardous Materials, 2022, 424, 127398.	12.4	1
2	A two-photon tandem black phosphorus quantum dot-sensitized BiVO ₄ photoanode for solar water splitting. Energy and Environmental Science, 2022, 15, 672-679.	30.8	64
3	Interface rich CuO/Al ₂ CuO ₄ surface for selective ethylene production from electrochemical CO ₂ conversion. Energy and Environmental Science, 2022, 15, 2397-2409.	30.8	54
4	High-Valent Iron Redox-Mediated Photoelectrochemical Water Oxidation. ACS Energy Letters, 2022, 7, 59-66.	17.4	10
5	Gas Diffusion through Nanoporous Channels of Graphene Oxide and Reduced Graphene Oxide Membranes. ACS Applied Nano Materials, 2022, 5, 7029-7035.	5.0	3
6	Investigation of the AgCl Formation Mechanism on the Ag Wire Surface for the Fabrication of a Marine Low-Frequency-Electric-Field-Detection Ag/AgCl Sensor Electrode. ACS Omega, 2022, 7, 25110-25121.	3.5	6
7	Visible-Light Activation of a Dissolved Organic Matter–TiO ₂ Complex Mediated <i>via</i> Ligand-to-Metal Charge Transfer. Environmental Science & Technology, 2022, 56, 10829-10837.	10.0	17
8	Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants. Journal of Hazardous Materials, 2021, 404, 123976.	12.4	63
9	Three-dimensional construction of electrode materials using TiC nanoarray substrates for highly efficient electrogeneration of sulfate radicals and molecular hydrogen in a single electrolysis cell. Journal of Materials Chemistry A, 2021, 9, 11705-11717.	10.3	5
10	Formamidine disulfide oxidant as a localised electron scavenger for >20% perovskite solar cell modules. Energy and Environmental Science, 2021, 14, 4903-4914.	30.8	63
11	Unexpected discovery of superoxide radical generation by oxygen vacancies containing biomass derived granular activated carbon. Water Research, 2021, 190, 116757.	11.3	17
12	Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst. Nature Communications, 2021, 12, 1856.	12.8	106
13	Unusual Hole Transfer Dynamics of the NiO Layer in Methylammonium Lead Tri-iodide Absorber Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 2770-2779.	4.6	12
14	Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. Applied Catalysis B: Environmental, 2021, 286, 119905.	20.2	61
15	Photocatalytic exoskeleton: Chitin nanofiber for retrievable and sustainable TiO2 carriers for the decomposition of various pollutants. Carbohydrate Polymers, 2021, 271, 118413.	10.2	7
16	Local pH induced electrochemical CO2 reduction on nanostructured Ag for adjustable syngas composition. Electrochimica Acta, 2021, 395, 139190.	5.2	12
17	Biomimetic photocatalysts for the conversion of aqueous- and gas-phase nitrogen species to molecular nitrogen <i>via</i> denitrification and ammonia oxidation. Journal of Materials Chemistry A, 2021, 9, 19179-19205.	10.3	6
18	A highly active, robust photocatalyst heterogenized in discrete cages of metal–organic polyhedra for CO ₂ reduction. Energy and Environmental Science, 2020, 13, 519-526.	30.8	59

WOOYUL KIM

#	Article	IF	CITATIONS
19	Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide. ACS Catalysis, 2020, 10, 852-863.	11.2	184
20	Photocatalytic degradation of phenolic compounds of defect engineered Fe3O4: An alternative approach to solar activation via ligand-to-metal charge transfer. Applied Surface Science, 2020, 509, 144853.	6.1	10
21	Enhancement of cesium adsorption on Prussian blue by TiO2 photocatalysis: Effect of the TiO2/PB ratio. Journal of Water Process Engineering, 2020, 38, 101571.	5.6	8
22	Detailed Characterization of an Annealed Reduced Graphene Oxide Catalyst for Selective Peroxide Formation Activity. ACS Applied Materials & amp; Interfaces, 2020, 12, 46439-46445.	8.0	4
23	Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO ₂ reduction. Energy and Environmental Science, 2020, 13, 4301-4311.	30.8	197
24	Underestimation of Platinum Electrocatalysis Induced by Carbon Monoxide Evolved from Graphite Counter Electrodes. ACS Catalysis, 2020, 10, 10773-10783.	11.2	26
25	Operando Spectroscopic Investigation of a Boron-Doped CuO Catalyst and Its Role in Selective Electrochemical C–C Coupling. ACS Applied Energy Materials, 2020, 3, 11343-11349.	5.1	28
26	Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO3 film. Nature Communications, 2020, 11, 967.	12.8	66
27	Nafion-Assisted Noncovalent Assembly of Molecular Sensitizers and Catalysts for Sustained Photoreduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2020, 8, 3709-3717.	6.7	10
28	Titanium dioxide surface modified with both palladium and fluoride as an efficient photocatalyst for the degradation of urea. Separation and Purification Technology, 2019, 209, 580-587.	7.9	26
29	Enhanced photoelectrochemical and hydrogen production activity of aligned CdS nanowire with anisotropic transport properties. Applied Surface Science, 2019, 463, 339-347.	6.1	37
30	Organometallic Iridium(III) Complex Sensitized Ternary Hybrid Photocatalyst for CO 2 to CO Conversion. Chemistry - A European Journal, 2019, 25, 13609-13623.	3.3	14
31	Formation of TiO ₂ @Carbon Core/Shell Nanocomposites from a Single Molecular Layer of Aromatic Compounds for Photocatalytic Hydrogen Peroxide Generation. ACS Applied Materials & Interfaces, 2019, 11, 41196-41203.	8.0	24
32	Thorn-like TiO2 nanoarrays with broad spectrum antimicrobial activity through physical puncture and photocatalytic action. Scientific Reports, 2019, 9, 13697.	3.3	19
33	Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nature Communications, 2019, 10, 2001.	12.8	222
34	Role of phosphate in ruthenium-complex-sensitized TiO2 system for hydrogen production: Mechanism and kinetics. Catalysis Today, 2019, 335, 236-242.	4.4	13
35	Carbon Dioxide Dimer Radical Anion as Surface Intermediate of Photoinduced CO ₂ Reduction at Aqueous Cu and CdSe Nanoparticle Catalysts by Rapid-Scan FT-IR Spectroscopy. Journal of the American Chemical Society, 2018, 140, 4363-4371.	13.7	84
36	Ostwald Ripening Driven Exfoliation to Ultrathin Layered Double Hydroxides Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 44518-44526.	8.0	53

WOOYUL КІМ

#	Article	IF	CITATIONS
37	Photocatalytic enhancement of cesium removal by Prussian blue-deposited TiO2. Journal of Hazardous Materials, 2018, 357, 449-456.	12.4	23
38	Active {001} Facet Exposed TiO ₂ Nanotubes Photocatalyst Filter for Volatile Organic Compounds Removal: From Material Development to Commercial Indoor Air Cleaner Application. Environmental Science & Technology, 2018, 52, 9330-9340.	10.0	121
39	An antenna/spacer/reflector based Au/BiVO4/WO3/Au nanopatterned photoanode for plasmon-enhanced photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2018, 237, 763-771.	20.2	70
40	ls surface fluorination of TiO2 effective for water purification? The degradation vs. mineralization of phenolic pollutants. Catalysis Today, 2017, 282, 24-30.	4.4	25
41	Investigating the Unrevealed Photocatalytic Activity and Stability of Nanostructured Brookite TiO ₂ Film as an Environmental Photocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 16252-16260.	8.0	63
42	Environmentally benign synthesis of CuInS2/ZnO heteronanorods: visible light activated photocatalysis of organic pollutant/bacteria and study of its mechanism. Photochemical and Photobiological Sciences, 2017, 16, 1792-1800.	2.9	17
43	Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: Simultaneous decolorization of dyes and production of oxidizing radicals. Applied Catalysis B: Environmental, 2017, 203, 475-484.	20.2	97
44	Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45, 3221-3243.	38.1	124
45	Hierarchical Inorganic Assemblies for Artificial Photosynthesis. Accounts of Chemical Research, 2016, 49, 1634-1645.	15.6	94
46	Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis. Photochemical and Photobiological Sciences, 2016, 15, 1006-1011.	2.9	13
47	Anodic TiO2 nanotube layer directly formed on the inner surface of Ti pipe for a tubular photocatalytic reactor. Applied Catalysis A: General, 2016, 521, 174-181.	4.3	17
48	Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. Journal of the American Chemical Society, 2015, 137, 12865-12872.	13.7	124
49	Directed Assembly of Cuprous Oxide Nanocatalyst for CO ₂ Reduction Coupled to Heterobinuclear ZrOCo ^{II} Light Absorber in Mesoporous Silica. ACS Catalysis, 2015, 5, 5627-5635.	11.2	32
50	N-doped TiO ₂ nanotubes coated with a thin TaO _x N _y layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. Energy and Environmental Science, 2015, 8, 247-257.	30.8	155
51	Inorganic core–shell assemblies for closing the artificial photosynthetic cycle. Faraday Discussions, 2014, 176, 233-249.	3.2	29
52	Molecular‣evel Understanding of the Photocatalytic Activity Difference between Anatase and Rutile Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 14036-14041.	13.8	143
53	Solar production of H ₂ O ₂ on reduced graphene oxide–TiO ₂ hybrid photocatalysts consisting of earth-abundant elements only. Energy and Environmental Science, 2014, 7, 4023-4028.	30.8	311
54	Light Induced Carbon Dioxide Reduction by Water at Binuclear ZrOCo ^{II} Unit Coupled to Ir Oxide Nanocluster Catalyst. Journal of the American Chemical Society, 2014, 136, 11034-11042.	13.7	85

WOOYUL KIM

#	Article	IF	CITATIONS
55	Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: Synergistic effects of co-dopants. Applied Catalysis B: Environmental, 2014, 147, 642-650.	20.2	69
56	Ruthenium(ii) complexes incorporating the bidentate ligand containing an imidazolium moiety: synthesis, characterization, and electrochemical properties and their application in a visible-light induced hydrogen-evolving system. New Journal of Chemistry, 2013, 37, 3174.	2.8	16
57	TiO2 nanodisks designed for Li-ion batteries: a novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy and Environmental Science, 2013, 6, 2932.	30.8	97
58	Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy and Environmental Science, 2013, 6, 3732.	30.8	134
59	Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15, 1-20.	11.6	858
60	Role of Interparticle Charge Transfers in Agglomerated Photocatalyst Nanoparticles: Demonstration in Aqueous Suspension of Dye-Sensitized TiO ₂ . Journal of Physical Chemistry Letters, 2013, 4, 189-194.	4.6	93
61	Superior Electron Transport and Photocatalytic Abilities of Metal-Nanoparticle-Loaded TiO ₂ Superstructures. Journal of Physical Chemistry C, 2012, 116, 25444-25453.	3.1	135
62	Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy and Environmental Science, 2012, 5, 6066.	30.8	137
63	Selective Oxidative Degradation of Organic Pollutants by Singlet Oxygen-Mediated Photosensitization: Tin Porphyrin versus C ₆₀ Aminofullerene Systems. Environmental Science & Technology, 2012, 46, 9606-9613.	10.0	190
64	Enhanced Photocatalytic and Photoelectrochemical Activity in the Ternary Hybrid of CdS/TiO ₂ /WO ₃ through the Cascadal Electron Transfer. Journal of Physical Chemistry C, 2011, 115, 9797-9805.	3.1	238
65	Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate. Carbon, 2011, 49, 3454-3462.	10.3	97
66	Tin-porphyrin sensitized TiO2 for the production of H2 under visible light. Energy and Environmental Science, 2010, 3, 1789.	30.8	127
67	Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Applied Catalysis B: Environmental, 2009, 91, 355-361.	20.2	351
68	Photocatalysis of Dye-Sensitized TiO ₂ Nanoparticles with Thin Overcoat of Al ₂ O ₃ : Enhanced Activity for H ₂ Production and Dechlorination of CCl ₄ . Journal of Physical Chemistry C, 2009, 113, 10603-10609.	3.1	146
69	Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica. Applied Catalysis B: Environmental, 2009, 91, 157-164.	20.2	62
70	Visible Light Photocatalysts Based on Homogeneous and Heterogenized Tin Porphyrins. Journal of Physical Chemistry C, 2008, 112, 491-499.	3.1	72
71	Effect of the Agglomerated State on the Photocatalytic Hydrogen Production with in Situ Agglomeration of Colloidal TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 20451-20457.	3.1	107
72	Solar denitrification coupled with <i>in situ</i> water splitting. Energy and Environmental Science, 0,	30.8	21