
Alfred I Geller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/628589/publications.pdf Version: 2024-02-01

ALEDED | CELLED

#	Article	IF	CITATIONS
1	Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Research, 2005, 1052, 119-129.	2.2	131
2	Coexpression of Tyrosine Hydroxylase, GTP Cyclohydrolase I, Aromatic Amino Acid Decarboxylase, and Vesicular Monoamine Transporter 2 from a Helper Virus-Free Herpes Simplex Virus Type 1 Vector Supports High-Level, Long-Term Biochemical and Behavioral Correction of a Rat Model of Parkinson's Disease. Human Gene Therapy, 2004, 15, 1177-1196.	2.7	74
3	A tyrosine hydroxylase–neurofilament chimeric promoter enhances long-term expression in rat forebrain neurons from helper virus-free HSV-1 vectors. Molecular Brain Research, 2000, 84, 17-31.	2.3	51
4	Improved Titers for Helper Virus-Free Herpes Simplex Virus Type 1 Plasmid Vectors by Optimization of the Packaging Protocol and Addition of Noninfectious Herpes Simplex Virus-Related Particles (Previral DNA Replication Enveloped Particles) to the Packaging Procedure. Human Gene Therapy, 1999, 10, 2005-2011.	2.7	47
5	Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter. Brain Research, 2007, 1144, 19-32.	2.2	47
6	Touchscreen-enhanced visual learning in rats. Behavior Research Methods, 2004, 36, 101-106.	1.3	45
7	Modulation of Rat Rotational Behavior by Direct Gene Transfer of Constitutively Active Protein Kinase C into Nigrostriatal Neurons. Journal of Neuroscience, 1998, 18, 4119-4132.	3.6	43
8	Genetic Enhancement of Visual Learning by Activation of Protein Kinase C Pathways in Small Groups of Rat Cortical Neurons. Journal of Neuroscience, 2005, 25, 8468-8481.	3.6	43
9	Enhanced reporter gene expression in the rat brain from helper virus-free HSV-1 vectors packaged in the presence of specific mutated HSV-1 proteins that affect the virion. Molecular Brain Research, 2001, 90, 1-16.	2.3	34
10	Improved spatial learning in aged rats by genetic activation of protein kinase C in small groups of hippocampal neurons. Hippocampus, 2009, 19, 413-423.	1.9	31
11	Enhanced auditory reversal learning by genetic activation of protein kinase C in small groups of rat hippocampal neurons. Molecular Brain Research, 2001, 93, 127-136.	2.3	29
12	Isolation of an enhancer from the rat tyrosine hydroxylase promoter that supports long-term, neuronal-specific expression from a neurofilament promoter, in a helper virus-free HSV-1 vector system. Brain Research, 2007, 1130, 1-16.	2.2	22
13	Gene transfer of constitutively active protein kinase C into striatal neurons accelerates onset of levodopa-induced motor response alterations in parkinsonian rats. Brain Research, 2003, 971, 18-30.	2.2	21
14	Targeted gene transfer to nigrostriatal neurons in the rat brain by helper virus-free HSV-1 vector particles that contain either a chimeric HSV-1 glycoprotein C-GDNF or a gC-BDNF protein. Molecular Brain Research, 2005, 139, 88-102.	2.3	21
15	Identified circuit in rat postrhinal cortex encodes essential information for performing specific visual shape discriminations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14478-14483.	7.1	21
16	General Strategy for Constructing Large HSV-1 Plasmid Vectors that Co-Express Multiple Genes. BioTechniques, 2001, 31, 204-212.	1.8	20
17	The vesicular glutamate transporter-1 upstream promoter and first intron each support glutamatergic-specific expression in rat postrhinal cortex. Brain Research, 2011, 1377, 1-12.	2.2	18
18	A helper virus-free HSV-1 vector containing the vesicular glutamate transporter-1 promoter supports expression preferentially in VGLUT1-containing glutamatergic neurons. Brain Research, 2010, 1331, 12-19.	2.2	17

Alfred I Geller

#	Article	IF	CITATIONS
19	Neurons can be labeled with unique hues by helper virus-free HSV-1 vectors expressing Brainbow. Journal of Neuroscience Methods, 2015, 240, 77-88.	2.5	13
20	CaMKII, MAPK, and CREB are coactivated in identified neurons in a neocortical circuit required for performing visual shape discriminations. Hippocampus, 2012, 22, 2276-2289.	1.9	11
21	Antibody-mediated targeted gene transfer to NMDA NR1-containing neurons in rat neocortex by helper virus-free HSV-1 vector particles containing a chimeric HSV-1 glycoprotein C–Staphylococcus A protein. Brain Research, 2010, 1351, 1-12.	2.2	10
22	Overexpression of either lysine-specific demethylase-1 or CLOCK, but not Co-Rest, improves long-term expression from a modified neurofilament promoter, in a helper virus-free HSV-1 vector system. Brain Research, 2012, 1436, 157-167.	2.2	10
23	Genetic labeling of both the axons of transduced, glutamatergic neurons in rat postrhinal cortex and their postsynaptic neurons in other neocortical areas by Herpes Simplex Virus vectors that coexpress an axon-targeted β-galactosidase and wheat germ agglutinin from a vesicular glutamate transporter-1 promoter. Brain Research. 2010. 1361. 1-11.	2.2	9
24	An identified ensemble within a neocortical circuit encodes essential information for geneticallyâ€enhanced visual shape learning. Hippocampus, 2019, 29, 710-725.	1.9	9
25	Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits. Brain Research, 2011, 1415, 127-135.	2.2	8
26	Long-term inducible expression in striatal neurons from helper virus-free HSV-1 vectors that contain the tetracycline-inducible promoter system. Brain Research, 2006, 1083, 1-13.	2.2	7
27	Targeted gene transfer of different genes to presynaptic and postsynaptic neocortical neurons connected by a glutamatergic synapse. Brain Research, 2012, 1473, 173-184.	2.2	7
28	Delivery of different genes into presynaptic and postsynaptic neocortical neurons connected by a BDNF-TrkB synapse. Brain Research, 2019, 1712, 16-24.	2.2	5
29	Delivery of different genes into pre- and post-synaptic neocortical interneurons connected by GABAergic synapses. PLoS ONE, 2019, 14, e0217094.	2.5	4
30	Characteristic and intermingled neocortical circuits encode different visual object discriminations. Behavioural Brain Research, 2017, 331, 261-275.	2.2	3
31	Efficient gene transfers into neocortical neurons connected by NMDA NR1-containing synapses. Journal of Neuroscience Methods, 2019, 327, 108390.	2.5	3
32	Separate Gene Transfers into Pre- and Postsynaptic Neocortical Neurons Connected by mGluR5-Containing Synapses. Journal of Molecular Neuroscience, 2019, 68, 549-564.	2.3	3
33	Connected neurons in multiple neocortical areas, comprising parallel circuits, encode essential information for visual shape learning. Journal of Chemical Neuroanatomy, 2021, 118, 102024.	2.1	1