Monique Culturato Padilha Mendonça

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6285553/publications.pdf

Version: 2024-02-01

29 papers 631 citations

15 h-index 25 g-index

29 all docs 29 docs citations

times ranked

29

1121 citing authors

#	Article	IF	CITATIONS
1	Reduced graphene oxide induces transient blood–brain barrier opening: an in vivo study. Journal of Nanobiotechnology, 2015, 13, 78.	4.2	87
2	PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood–Brain Barrier: An ⟨i⟩in Vitro⟨/i⟩ and ⟨i⟩in Vivo⟨/i⟩ Study. Molecular Pharmaceutics, 2016, 13, 3913-3924.	2.3	71
3	Reduced graphene oxide: nanotoxicological profile in rats. Journal of Nanobiotechnology, 2016, 14, 53.	4.2	54
4	Jaboticaba berry peel intake prevents insulinâ€resistanceâ€induced tau phosphorylation in mice. Molecular Nutrition and Food Research, 2017, 61, 1600952.	1.5	45
5	Soft Nanohydrogels Based on Laponite Nanodiscs: A Versatile Drug Delivery Platform for Theranostics and Drug Cocktails. ACS Applied Materials & Interfaces, 2018, 10, 21891-21900.	4.0	39
6	Jaboticaba berry peel intake increases short chain fatty acids production and prevent hepatic steatosis in mice fed high-fat diet. Journal of Functional Foods, 2018, 48, 266-274.	1.6	35
7	Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Molecular Pharmaceutics, 2021, 18, 1491-1506.	2.3	32
8	Temporal relationship between aquaporin-4 and glial fibrillary acidic protein in cerebellum of neonate and adult rats administered a BBB disrupting spider venom. Toxicon, 2013, 66, 37-46.	0.8	26
9	Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxiaâ€ischemia. International Journal of Developmental Neuroscience, 2016, 53, 35-45.	0.7	26
10	Evidences of endocytosis via caveolae following blood–brain barrier breakdown by Phoneutria nigriventer spider venom. Toxicology Letters, 2014, 229, 415-422.	0.4	19
11	N-Acetylcysteine reverses silver nanoparticle intoxication in rats. Nanotoxicology, 2019, 13, 326-338.	1.6	18
12	Modified cyclodextrin-based nanoparticles mediated delivery of siRNA for huntingtin gene silencing across an in vitro BBB model. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 309-318.	2.0	17
13	Upregulation of the vascular endothelial growth factor, Flt-1, in rat hippocampal neurons after envenoming by Phoneutria nigriventer; age-related modulation. Toxicon, 2012, 60, 656-664.	0.8	16
14	Expression of VEGF and Flk-1 and Flt-1 Receptors during Blood-Brain Barrier (BBB) Impairment Following Phoneutria nigriventer Spider Venom Exposure. Toxins, 2013, 5, 2572-2588.	1.5	16
15	The protective effects of fermented kefir milk on azoxymethane-induced aberrant crypt formation in mice colon. Tissue and Cell, 2018, 52, 51-56.	1.0	16
16	Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Enchytraeus crypticus Reduced Full Life Cycle. Nanomaterials, 2019, 9, 858.	1.9	15
17	The in vivo toxicological profile of cationic solid lipid nanoparticles. Drug Delivery and Translational Research, 2020, 10, 34-42.	3.0	14
18	Vascular Endothelial Growth Factor Increases during Blood-Brain Barrier-Enhanced Permeability Caused by <i>Phoneutria nigriventer </i> Spider Venom. BioMed Research International, 2014, 2014, 1-13.	0.9	12

#	Article	IF	CITATIONS
19	Syzygium malaccense fruit supplementation protects mice brain against high-fat diet impairment and improves cognitive functions. Journal of Functional Foods, 2020, 65, 103745.	1.6	12
20	eNOS uncoupling in the cerebellum after BBB disruption by exposure to Phoneutria nigriventer spider venom. Toxicon, 2015, 104, 7-13.	0.8	10
21	The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus. Environmental Pollution, 2020, 256, 113484.	3.7	10
22	Caveolae as a target for Phoneutria nigriventer spider venom. NeuroToxicology, 2016, 54, 111-118.	1.4	9
23	Protective effect of N-acetylcysteine on the toxicity of silver nanoparticles: Bioavailability and toxicokinetics in Enchytraeus crypticus. Science of the Total Environment, 2020, 715, 136797.	3.9	9
24	Nanomaterials in the Environment: Perspectives on in Vivo Terrestrial Toxicity Testing. Frontiers in Environmental Science, 2017, 5 , .	1.5	8
25	Are Synchronized Changes in Connexin-43 and Caveolin-3 a Bystander Effect in a Phoneutria nigriventer Venom Model of Blood-Brain Barrier Breakdown?. Journal of Molecular Neuroscience, 2016, 59, 452-463.	1.1	6
26	Age-Related Modulations of AQP4 and Caveolin-1 in the Hippocampus Predispose the Toxic Effect of Phoneutria nigriventer Spider Venom. International Journal of Molecular Sciences, 2016, 17, 1462.	1.8	3
27	Inhibition of VEGF-Flk-1 binding induced profound biochemical alteration in the hippocampus of a rat model of BBB breakdown by spider venom. A preliminary assessment using FT-IR spectroscopy. Neurochemistry International, 2018, 120, 64-74.	1.9	3
28	VEGF/VEGFR-2 system exerts neuroprotection against Phoneutria nigriventer spider envenomation through PI3K-AKT-dependent pathway. Toxicon, 2020, 185, 76-90.	0.8	2
29	Raman Spectroscopy as a Tool to Evaluate Brain Tissue Composition After Administration of Reduced Graphene Oxide. Journal of Applied Spectroscopy, 2016, 83, 805-810.	0.3	1