
José Alberto Maroto-Centeno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6285479/publications.pdf

Version: 2024-02-01

José Alberto

#	Article	IF	CITATIONS
1	Gel swelling theories: the classical formalism and recent approaches. Soft Matter, 2011, 7, 10536.	2.7	287
2	Introductory analysis of Bénard–Marangoni convection. European Journal of Physics, 2007, 28, 311-320.	0.6	42
3	Charge reversal in real colloids: Experiments, theory and simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319, 103-108.	4.7	38
4	Effect of the Counterion Valence on the Behavior of Thermo-Sensitive Gels and Microgels: A Monte Carlo Simulation Study. Macromolecules, 2012, 45, 8872-8879.	4.8	36
5	Optimization of the heterocoagulation process of polymer colloids with different particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96, 121-133.	4.7	35
6	Particle interactions in colloidal aggregation by Brownian dynamics simulation. Physical Review E, 1999, 59, 1943-1947.	2.1	26
7	Interaction between Ideal Neutral Nanogels: A Monte Carlo Simulation Study. Macromolecules, 2017, 50, 2229-2238.	4.8	24
8	Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study. Journal of Chemical Physics, 2014, 140, 204910.	3.0	22
9	Testing one component plasma models on colloidal overcharging phenomena. Journal of Chemical Physics, 2006, 125, 144906.	3.0	20
10	Influence of multiple light scattering on the estimation of homocoagulation and heterocoagulation rate constants by turbidity measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 132, 153-158.	4.7	15
11	On the kinetics of heteroaggregation versus electrolyte concentration: comparison between simulation and experiment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 473-481.	4.7	15
12	Colloidal stability in homo- and hetero-coagulation processes. Comparison between theoretical and experimental data. , 1995, , 89-93.		14
13	Influence of the adsorption of non-ionic surfactant Triton X-100 on the homocoagulation and heterocoagulation processes of model colloids with equal sizes and opposite sign of charge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 145, 271-279.	4.7	14
14	Use of a Mariotte bottle for the experimental study of the transition from laminar to turbulent flow. American Journal of Physics, 2002, 70, 698-701.	0.7	14
15	Direct determination of forces between charged nanogels through coarse-grained simulations. Physical Review E, 2018, 97, 042608.	2.1	14
16	Estimation of kinetic rate constants by turbidity and nephelometry techniques in a homocoagulation process with different model colloids. Colloid and Polymer Science, 1997, 275, 1148-1155.	2.1	10
17	Prediction of fuel economy performance of engine lubricants based on laboratory bench tests. Tribology International, 2016, 94, 67-70.	5.9	10
18	Coarse-Grained Simulations of Solute Diffusion in Crosslinked Flexible Hydrogels. Macromolecules, 2022, 55, 1495-1504.	4.8	9

JOSé ALBERTO

#	Article	IF	CITATIONS
19	Theoretical description of the absorbance versus time curve in a homocoagulation process Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 140, 23-31.	4.7	8
20	Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect of excluded volume interactions. Journal of Chemical Physics, 2020, 152, 024107.	3.0	8
21	Universal description of steric hindrance in flexible polymer gels. Physical Chemistry Chemical Physics, 2021, 23, 14997-15002.	2.8	8
22	The approximate determination of the critical temperature of a liquid by measuring surface tension versus the temperature. European Journal of Physics, 2004, 25, 297-301.	0.6	7
23	Experimental evaluation of the drag coefficient for smooth spheres by free fall experiments in old mines. European Journal of Physics, 2005, 26, 323-330.	0.6	6
24	Description of additive colour mixing exhibits by using PC-designed Maxwell discs. Physics Education, 2006, 41, 448-452.	0.5	5
25	Theoretical and experimental comparison of the colloid stability of two polystyrene latexes with different sign and value of the surface charge. Colloid and Polymer Science, 1998, 276, 453-458.	2.1	4
26	Coarse-grained simulation study of dual-stimuli-responsive nanogels. Colloid and Polymer Science, 2016, 294, 735-741.	2.1	3
27	Computational aids for the estimation of the molecular weight of petroleum oils from kinematic viscosity measurements. Petroleum Chemistry, 2007, 47, 87-91.	1.4	2
28	Computational analysis of the accuracy in the evaluation of the mean molecular weight of petroleum oils from the ASTM Standard D 2502-92. Journal of Petroleum Science and Engineering, 2009, 69, 89-92.	4.2	2
29	Influence of the ionic strength in the heterocoagulation process between bare and surfactant-coated latexes. Colloid and Polymer Science, 1999, 277, 881-885.	2.1	1
30	Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils. Journal of Chemical Education, 2010, 87, 323-325.	2.3	1
31	Evaluation of the Lorentz law by using a Barlow wheel. IEEE Transactions on Education, 2000, 43, 316-320.	2.4	0
32	Theoretical approach to a better understanding of gelation in the framework of petroleum industry: role played by different parameters. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 403-409.	0.9	0
33	Experimental testing and theoretical characterization of an oil gelation process under shearing. Petroleum Chemistry, 2015, 55, 252-258.	1.4	0
34	Advances in the Understanding of Gelation in the Framework of the Test ASTM D5133. Journal of Testing and Evaluation, 2013, 41, 305-312.	0.7	0