List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6285068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protective Effects of Carbon Dots Derived from Armeniacae Semen Amarum Carbonisata Against Acute Lung Injury Induced by Lipopolysaccharides in Rats. International Journal of Nanomedicine, 2022, Volume 17, 1-14.	6.7	14
2	Fluorescence Imaging, Metabolism, and Biodistribution of Biocompatible Carbon Dots Synthesized Using <i>Punica granatum</i> L. Peel. Journal of Biomedical Nanotechnology, 2022, 18, 381-393.	1,1	2
3	Carbon dots from Artemisiae Argyi Folium Carbonisata: strengthening the anti-frostbite ability. Artificial Cells, Nanomedicine and Biotechnology, 2021, 49, 11-19.	2.8	16
4	Water-Soluble Carbon Dots in Cigarette Mainstream Smoke: Their Properties and the Behavioural, Neuroendocrinological, and Neurotransmitter Changes They Induce in Mice. International Journal of Nanomedicine, 2021, Volume 16, 2203-2217.	6.7	7
5	Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect. Molecules, 2021, 26, 1512.	3.8	16
6	Protective Effects of Radix Sophorae Flavescentis Carbonisata-Based Carbon Dots Against Ethanolâ€Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities. International Journal of Nanomedicine, 2021, Volume 16, 2461-2475.	6.7	29
7	Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. Journal of Nanobiotechnology, 2021, 19, 105.	9.1	38
8	Gastroprotective effects of <i>Nelumbinis Rhizomatis Nodus-</i> derived carbon dots on ethanol-induced gastric ulcers in rats. Nanomedicine, 2021, 16, 1657-1671.	3.3	5
9	The neuroprotective effect of pretreatment with carbon dots from Crinis Carbonisatus (carbonized) Tj ETQq1	1 0.784314	rgBJ /Overlo
10	Edible and highly biocompatible nanodots from natural plants for the treatment of stress gastric ulcers. Nanoscale, 2021, 13, 6809-6818.	5.6	17
11	Development of a Lateral Flow Immunochromatographic Strip for Rapid and Quantitative Detection of Small Molecule Compounds. Journal of Visualized Experiments, 2021, , .	0.3	0
12	Development of Ecofriendly Carbon Dots for Improving Solubility and Antinociceptive Activity of Glycyrrhizic Acid. Journal of Biomedical Nanotechnology, 2021, 17, 640-651.	1.1	3
13	The Bioactivity of Scutellariae Radix Carbonisata-Derived Carbon Dots: Antiallergic Effect. Journal of Biomedical Nanotechnology, 2021, 17, 2485-2494.	1.1	7
14	Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 68-76.	2.8	42
15	<p>Carbon Dots from Paeoniae Radix Alba Carbonisata: Hepatoprotective Effect</p> . International Journal of Nanomedicine, 2020, Volume 15, 9049-9059.	6.7	21
16	<p>Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide</p> . International Journal of Nanomedicine, 2020, Volume 15, 4139-4149.	6.7	26
17	Haemostatic Nanoparticles-Derived Bioactivity of from Selaginella tamariscina Carbonisata. Molecules, 2020, 25, 446.	3.8	13
18	Green synthesis of <i>Zingiberis rhizoma</i> -based carbon dots attenuates chemical and thermal stimulus pain in mice. Nanomedicine, 2020, 15, 851-869.	3.3	23

#	Article	IF	CITATIONS
19	Antihyperuricemic and anti-gouty arthritis activities of <i>Aurantii fructus immaturus</i> carbonisata-derived carbon dots. Nanomedicine, 2019, 14, 2925-2939.	3.3	32
20	Hemostatic and hepatoprotective bioactivity of Junci Medulla Carbonisata-derived Carbon Dots. Nanomedicine, 2019, 14, 431-446.	3.3	34
21	Network Pharmacology and Bioinformatics Approach Reveals the Therapeutic Mechanism of Action of Baicalein in Hepatocellular Carcinoma. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-15.	1.2	37
22	Generation of Monoclonal Antibodies Against Natural Products. Journal of Visualized Experiments, 2019, , .	0.3	0
23	Novel Carbon Dots Derived from Puerariae lobatae Radix and Their Anti-Gout Effects. Molecules, 2019, 24, 4152.	3.8	26
24	Distribution kinetics of puerarin in rat hippocampus after acute local cerebral ischemia. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 196-201.	2.8	13
25	Protective Effects of Carbon Dots Derived from Phellodendri Chinensis Cortex Carbonisata against Deinagkistrodon acutus Venom-Induced Acute Kidney Injury. Nanoscale Research Letters, 2019, 14, 377.	5.7	24
26	Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro. Neural Regeneration Research, 2019, 14, 1941.	3.0	24
27	Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-10.	2.8	25
28	Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect. Nanomedicine, 2018, 13, 391-405.	3.3	48
29	Hemostatic effect of novel carbon dots derived from <i>Cirsium setosum</i> Carbonisata. RSC Advances, 2018, 8, 37707-37714.	3.6	25
30	Haemostatic bioactivity of novel <i>Schizonepetae Spica Carbonisata</i> -derived carbon dots via platelet counts elevation. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 308-317.	2.8	26
31	Novel Carbon Dots Derived from Cirsii Japonici Herba Carbonisata and Their Haemostatic Effect. Journal of Biomedical Nanotechnology, 2018, 14, 1635-1644.	1.1	17
32	A Highly Sensitive Immunochromatographic Strip Test for Rapid and Quantitative Detection of Saikosaponin d. Molecules, 2018, 23, 338.	3.8	7
33	Development of a One-Step Lateral Flow Immunoassay for Rapid Detection of Icariin. Current Pharmaceutical Analysis, 2018, 14, .	0.6	1
34	Detection of total bile acids in biological samples using an indirect competitive ELISA based on four monoclonal antibodies. Analytical Methods, 2017, 9, 625-633.	2.7	3
35	Development of Fluorescence-Linked Immunosorbent Assay for Icariin. Journal of Fluorescence, 2017, 27, 1661-1665.	2.5	3
36	Quantum dot-based lateral-flow immunoassay for rapid detection of rhein using specific egg yolk antibodies. Artificial Cells, Nanomedicine and Biotechnology, 2017, 46, 1-9.	2.8	13

#	Article	IF	CITATIONS
37	Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS Nano, 2017, 11, 9500-9513.	14.6	79
38	Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Scientific Reports, 2017, 7, 4452.	3.3	52
39	A sensitive and specific indirect competitive enzyme-linked immunosorbent assay for the detection of icariin. Molecular Medicine Reports, 2017, 15, 411-416.	2.4	1
40	Monoclonal Antibodies and Immunoassay for Medical Plant-Derived Natural Products: A Review. Molecules, 2017, 22, 355.	3.8	17
41	The Effects of Sweet Foods on the Pharmacokinetics of Glycyrrhizic Acid by icELISA. Molecules, 2017, 22, 498.	3.8	6
42	Pharmacokinetics and Tissue Distribution Kinetics of Puerarin in Rats Using Indirect Competitive ELISA. Molecules, 2017, 22, 939.	3.8	21
43	In vivo biodistribution and behavior of CdTe/ZnS quantum dots. International Journal of Nanomedicine, 2017, Volume 12, 1927-1939.	6.7	18
44	Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots. Journal of Nanobiotechnology, 2017, 15, 60.	9.1	71
45	Rapid, sensitive separation of the three main isoflavones in soybean using immunoaffinity chromatography. Journal of Separation Science, 2016, 39, 1195-1201.	2.5	10
46	Novel immunoassay and rapid immunoaffinity chromatography method for the detection and selective extraction of naringin in <i>Citrus aurantium</i> . Journal of Separation Science, 2016, 39, 1389-1398.	2.5	12
47	Development of a sensitive and reliable enzyme-linked immunosorbent assay for detecting naringin in human saliva. Analytical Methods, 2016, 8, 987-994.	2.7	1
48	Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin. Biosensors and Bioelectronics, 2016, 81, 358-362.	10.1	60
49	Development of an Enzyme-Linked Immunosorbent Assay and Immunoaffinity Column Chromatography for Saikosaponin d Using an Anti-Saikosaponin d Monoclonal Antibody. Planta Medica, 2016, 82, 432-439.	1.3	7
50	Sandwich enzyme-linked immunosorbent assay for naringin. Analytica Chimica Acta, 2016, 903, 149-155.	5.4	14
51	Development of immunoaffinity chromatography to specifically knockout baicalin from Gegenqinlian Decoction. Journal of Separation Science, 2015, 38, 2746-2752.	2.5	5
52	Determination of baicalin and ginsenoside Re in Banxia-Xiexin decoction using pharmacokinetics and icELISA analysis in mice. Effects of interaction between prescription herbs on the pharmacokinetics of compounds. Analytical Methods, 2015, 7, 3048-3053.	2.7	3
53	Enzyme-Linked Immunosorbent Assay for Hyodeoxycholic Acid in Pharmaceutical Products Using a Monoclonal Antibody. Analytical Letters, 2015, 48, 1285-1296.	1.8	5
54	Development of ELISA for detection of Rh1 and Rg2 and potential method of immunoaffinity chromatography for separation of epimers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 985, 197-205.	2.3	18

#	Article	IF	CITATIONS
55	Development of a Fluorescence-Linked Immunosorbent Assay for Baicalin. Journal of Fluorescence, 2015, 25, 1371-1376.	2.5	11
56	Development of an enzyme-linked immunosorbent assay for chenodeoxycholic acid using an anti-chenodeoxycholic acid monoclonal antibody. Analytical Methods, 2015, 7, 4583-4589.	2.7	3
57	A Sensitive and Specific Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Paeoniflorin and Its Application in Pharmacokinetic Interactions between Paeoniflorin and Glycyrrhizinic Acid. Planta Medica, 2015, 81, 765-770.	1.3	11
58	Development of an enzymeâ€linked immunosorbent assay and immunoaffinity chromatography for glycyrrhizic acid using an antiâ€glycyrrhizic acid monoclonal antibody. Journal of Separation Science, 2015, 38, 2363-2370.	2.5	10
59	Establishment of an Enzyme-Linked Immunosorbent Assay and Application on Determination of Ginsenoside Re in Human Saliva. Planta Medica, 2014, 80, 1143-1150.	1.3	17
60	Development of an enzyme-linked immunosorbent assay based on anti-puerarin monoclonal antibody and its applications. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 953-954, 120-125.	2.3	27