List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6284823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Opportunities for Precision Treatment of <i>GRIN2A</i> and <i>GRIN2B</i> Gain-of-Function Variants in Triheteromeric N-Methyl-D-Aspartate Receptors. Journal of Pharmacology and Experimental Therapeutics, 2022, 381, 54-66.	1.3	5
2	The Negative Allosteric Modulator EU1794-4 Reduces Single-Channel Conductance and Ca ²⁺ Permeability of GluN1/GluN2A <i>N</i> -Methyl-d-Aspartate Receptors. Molecular Pharmacology, 2021, 99, 399-411.	1.0	9
3	Recurrent seizureâ€related <i>GRIN1</i> variant: Molecular mechanism and targeted therapy. Annals of Clinical and Translational Neurology, 2021, 8, 1480-1494.	1.7	17
4	A de novo GRIN1 Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology. Frontiers in Genetics, 2021, 12, 694312.	1.1	6
5	Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology, 2021, 199, 108805.	2.0	25
6	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	7.1	237
7	GRIN2D/GluN2D NMDA receptor: Unique features and its contribution to pediatric developmental and epileptic encephalopathy. European Journal of Paediatric Neurology, 2020, 24, 89-99.	0.7	28
8	Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders. Neuropharmacology, 2020, 177, 108247.	2.0	22
9	The <scp><i>GRIA3</i></scp> c. <scp>2477G</scp> > A Variant Causes an Exaggerated Startle Reflex, Chorea, and Multifocal Myoclonus. Movement Disorders, 2020, 35, 1224-1232.	2.2	13
10	Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Neuropharmacology, 2020, 176, 108117.	2.0	17
11	Hodgkin–Huxley–Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. Journal of Physiology, 2020, 598, 3071-3083.	1.3	23
12	Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice. Brain, 2020, 143, 2039-2057.	3.7	51
13	Biased modulators of NMDA receptors control channel opening and ion selectivity. Nature Chemical Biology, 2020, 16, 188-196.	3.9	26
14	De novo <i>GRIN</i> variants in NMDA receptor M2 channel poreâ€forming loop are associated with neurological diseases. Human Mutation, 2019, 40, 2393-2413.	1.1	48
15	Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain, 2019, 142, 3009-3027.	3.7	49
16	Synthesis and Preliminary Evaluations of a Triazole-Cored Antagonist as a PET Imaging Probe ([¹⁸ F]N2B-0518) for GluN2B Subunit in the Brain. ACS Chemical Neuroscience, 2019, 10, 2263-2275.	1.7	13
17	Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nature Communications, 2019, 10, 321.	5.8	32
18	Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Research, 2019, 8, 1940.	0.8	92

#	Article	IF	CITATIONS
19	A novel missense mutation in <i>GRIN2A</i> causes a nonepileptic neurodevelopmental disorder. Movement Disorders, 2018, 33, 992-999.	2.2	26
20	De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain, 2018, 141, 698-712.	3.7	72
21	De novo mutations and rare variants occurring in NMDA receptors. Current Opinion in Physiology, 2018, 2, 27-35.	0.9	97
22	The GluN2Bâ€Glu413Gly NMDA receptor variant arising from ade novo GRIN2Bmutation promotes ligandâ€unbinding and domain opening. Proteins: Structure, Function and Bioinformatics, 2018, 86, 1265-1276.	1.5	15
23	Triheteromeric GluN1/GluN2A/GluN2C NMDARs with Unique Single-Channel Properties Are the Dominant Receptor Population in Cerebellar Granule Cells. Neuron, 2018, 99, 315-328.e5.	3.8	42
24	Functional Evaluation of a De Novo <i>GRIN2A</i> Mutation Identified in a Patient with Profound Global Developmental Delay and Refractory Epilepsy. Molecular Pharmacology, 2017, 91, 317-330.	1.0	66
25	GRIN1 mutation associated with intellectual disability alters NMDA receptor trafficking and function. Journal of Human Genetics, 2017, 62, 589-597.	1.1	81
26	<i>GRIN2B</i> encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. Journal of Medical Genetics, 2017, 54, 460-470.	1.5	190
27	A Rare Variant Identified Within the GluN2B C-Terminus in a Patient with Autism Affects NMDA Receptor Surface Expression and Spine Density. Journal of Neuroscience, 2017, 37, 4093-4102.	1.7	64
28	AMPA Receptors: Molecular Biology and Pharmacology \hat{a} ⁺ , , 2017, , .		5
29	A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. PLoS ONE, 2017, 12, e0170818.	1.1	51
30	Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. PLoS Genetics, 2017, 13, e1006536.	1.5	117
31	GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. American Journal of Human Genetics, 2016, 99, 802-816.	2.6	138
32	Mechanistic Insight into NMDA Receptor Dysregulation by Rare Variants in the GluN2A and GluN2B Agonist Binding Domains. American Journal of Human Genetics, 2016, 99, 1261-1280.	2.6	158
33	Human GRIN2B variants in neurodevelopmental disorders. Journal of Pharmacological Sciences, 2016, 132, 115-121.	1.1	180
34	lonotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases. Molecular Pharmacology, 2015, 88, 203-217.	1.0	177
35	Context-Dependent GluN2B-Selective Inhibitors of NMDA Receptor Function Are Neuroprotective with Minimal Side Effects. Neuron, 2015, 85, 1305-1318.	3.8	57
36	A novel class of negative allosteric modulators of NMDA receptor function. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5583-5588.	1.0	14

#	Article	IF	CITATIONS
37	GRIN1 Mutations in Early-Onset Epileptic Encephalopathy. Pediatric Neurology Briefs, 2015, 29, 44.	0.2	2
38	Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nature Communications, 2014, 5, 3251.	5.8	128
39	<i>GRIN2A</i> mutation and earlyâ€onset epileptic encephalopathy: personalized therapy with memantine. Annals of Clinical and Translational Neurology, 2014, 1, 190-198.	1.7	248
40	Distinct Functional and Pharmacological Properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA Receptors. Neuron, 2014, 81, 1084-1096.	3.8	246
41	A Human Mutation in the M4 Helix of GluN2A Accelerates Forward Gating Transitions in NMDA Receptors. Biophysical Journal, 2014, 106, 150a.	0.2	0
42	Three rare diseases in one Sib pair: RAI1, PCK1, GRIN2B mutations associated with Smith–Magenis Syndrome, cytosolic PEPCK deficiency and NMDA receptor glutamate insensitivity. Molecular Genetics and Metabolism, 2014, 113, 161-170.	0.5	58
43	Mapping the Binding of GluN2B-Selective <i>N</i> -Methyl-d-aspartate Receptor Negative Allosteric Modulators. Molecular Pharmacology, 2012, 82, 344-359.	1.0	44
44	Mechanism for Noncompetitive Inhibition by Novel GluN2C/D <i>N</i> -Methyl-d-aspartate Receptor Subunit-Selective Modulators. Molecular Pharmacology, 2011, 80, 782-795.	1.0	89
45	Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective <i>N</i> -Methyl-d-Aspartate Receptor Antagonists. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 650-662.	1.3	40
46	A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nature Communications, 2010, 1, 90.	5.8	137
47	Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 2010, 62, 405-496.	7.1	2,973
48	The Serine Protease Plasmin Cleaves the Amino-terminal Domain of the NR2A Subunit to Relieve Zinc Inhibition of the N-Methyl-d-aspartate Receptors. Journal of Biological Chemistry, 2009, 284, 12862-12873.	1.6	40
49	Synthesis, structural activity-relationships, and biological evaluation of novel amide-based allosteric binding site antagonists in NR1A/NR2B N-methyl-d-aspartate receptorsâ~†. Bioorganic and Medicinal Chemistry, 2009, 17, 6463-6480.	1.4	30
50	AMPA Receptors: Molecular Biology and Pharmacology. , 2009, , 311-318.		1
51	Control of NMDA Receptor Function by the NR2 Subunit Amino-Terminal Domain. Journal of Neuroscience, 2009, 29, 12045-12058.	1.7	189
52	Enantiomeric Propanolamines as selective <i>N</i> -Methyl- <scp>d</scp> -aspartate 2B Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 5506-5521.	2.9	25
53	Plasmin Potentiates Synaptic N-Methyl-D-aspartate Receptor Function in Hippocampal Neurons through Activation of Protease-activated Receptor-1. Journal of Biological Chemistry, 2008, 283, 20600-20611.	1.6	60

54 Structure and Function of the NMDA Receptor. , 2008, , 289-316.

#	Article	IF	CITATIONS
55	A starring role for astrocytes. , 2008, , 31-33.		0
56	Exacerbation of Dopaminergic Terminal Damage in a Mouse Model of Parkinson's Disease by the G-Protein-Coupled Receptor Protease-Activated Receptor 1. Molecular Pharmacology, 2007, 72, 653-664.	1.0	46
57	Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. Journal of Physiology, 2007, 581, 107-128.	1.3	133
58	Astrocytic control of synaptic NMDA receptors. Journal of Physiology, 2007, 581, 1057-1081.	1.3	186
59	Structural aspects of AMPA receptor activation, desensitization and deactivation. Current Opinion in Neurobiology, 2007, 17, 281-288.	2.0	68
60	Subunit-Specific Agonist Activity at NR2A-, NR2B-, NR2C-, and NR2D-Containing <i>N</i> -Methyl-d-aspartate Glutamate Receptors. Molecular Pharmacology, 2007, 72, 907-920.	1.0	151
61	Conserved Structural and Functional Control of N-Methyl-d-aspartate Receptor Gating by Transmembrane Domain M3. Journal of Biological Chemistry, 2005, 280, 29708-29716.	1.6	92
62	Structural Features of the Glutamate Binding Site in Recombinant NR1/NR2A N-Methyl-d-aspartate Receptors Determined by Site-Directed Mutagenesis and Molecular Modeling. Molecular Pharmacology, 2005, 67, 1470-1484.	1.0	138
63	Multiminute oscillations in mouse substantia nigra pars reticulata neurons in vitro. Neuroscience Letters, 2004, 355, 136-140.	1.0	4
64	Glucose sensitivity in mouse substantia nigra pars reticulata neurons in vitro. Neuroscience Letters, 2004, 355, 173-176.	1.0	12
65	Protective Role of ATP-Sensitive Potassium Channels in Hypoxia-Induced Generalized Seizure. Science, 2001, 292, 1543-1546.	6.0	318