
## Thomas Kenkmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6284804/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Circum-Tharsis wrinkle ridges at Lunae Planum: Morphometry, formation, and crustal implications.<br>Icarus, 2022, 374, 114808.                                                                     | 2.5  | 7         |
| 2  | Dynamic compressive strength and fragmentation in sedimentary and metamorphic rocks.<br>Tectonophysics, 2022, 824, 229221.                                                                         | 2.2  | 7         |
| 3  | The TanDEM-X Digital Elevation Model and Terrestrial Impact Structures. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4128-4138.                     | 4.9  | 3         |
| 4  | Asymmetric shock deformation at the Spider impact structure, Western Australia. Meteoritics and Planetary Science, 2021, 56, 331-351.                                                              | 1.6  | 5         |
| 5  | The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages,<br>lithologies, and more. Meteoritics and Planetary Science, 2021, 56, 1024-1070.                  | 1.6  | 36        |
| 6  | Shock deformation microstructures in xenotime from the Spider impact structure, Western Australia. , 2021, , .                                                                                     |      | 2         |
| 7  | Rampart craters on Earth. , 2021, , 607-627.                                                                                                                                                       |      | 1         |
| 8  | The Cleanskin impact structure, Northern Territory and Queensland, Australia: A reconnaissance study. , 2021, , 69-80.                                                                             |      | 1         |
| 9  | Stress and strain during shock metamorphism. Icarus, 2021, 370, 114687.                                                                                                                            | 2.5  | 9         |
| 10 | Dynamic Compressive Strength and Fragmentation in Felsic Crystalline Rocks. Journal of Geophysical<br>Research E: Planets, 2020, 125, e2020JE006561.                                               | 3.6  | 10        |
| 11 | Tracing shock-wave propagation in the Chicxulub crater: Implications for the formation of peak rings.<br>Geology, 2020, 48, 814-818.                                                               | 4.4  | 8         |
| 12 | Central uplift collapse in acoustically fluidized granular targets: Insights from analog modeling.<br>Meteoritics and Planetary Science, 2020, 55, 441-456.                                        | 1.6  | 2         |
| 13 | Ramgarh, Rajasthan, India: A 10Âkm diameter complex impact structure. Meteoritics and Planetary<br>Science, 2020, 55, 936-961.                                                                     | 1.6  | 10        |
| 14 | Comment on $\hat{a} \in \hat{\infty}$ Earth and Moon impact flux increased at the end of the Paleozoic $\hat{a} \in \hat{S}$ Science, 2019, 365, .                                                 | 12.6 | 5         |
| 15 | Variation in Magnetic Fabrics at Low Shock Pressure Due to Experimental Impact Cratering. Journal of<br>Geophysical Research: Solid Earth, 2019, 124, 9095-9108.                                   | 3.4  | 9         |
| 16 | Geological and geophysical studies of the Agoudal impact structure (Central High Atlas, Morocco):<br>New evidence for crater size and age. Meteoritics and Planetary Science, 2019, 54, 2483-2509. | 1.6  | 3         |
| 17 | Long-term erosion rates as a function of climate derived from the impact crater inventory. Earth<br>Surface Dynamics, 2019, 7, 459-473.                                                            | 2.4  | 8         |
| 18 | The Erbisberg drilling 2011: Implications for the structure and postimpact evolution of the inner ring of the Ries impact crater. Meteoritics and Planetary Science, 2019, 54, 2448-2482.          | 1.6  | 7         |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impact Experiment on Gneiss: The Effects of Foliation on Cratering Process. Journal of Geophysical<br>Research: Solid Earth, 2019, 124, 13532-13546.                                                                                                | 3.4 | 12        |
| 20 | Combined remote sensing analyses and landform evolution modeling reveal the terrestrial Bosumtwi impact structure as a Mars-like rampart crater. Earth and Planetary Science Letters, 2019, 506, 209-220.                                           | 4.4 | 14        |
| 21 | Obituary for a brilliant materials scientist-on Klaus Thoma's death. Meteoritics and Planetary Science, 2019, 54, 254-255.                                                                                                                          | 1.6 | Ο         |
| 22 | Experimental impact cratering: A summary of the major results of the <scp>MEMIN</scp> research unit. Meteoritics and Planetary Science, 2018, 53, 1543-1568.                                                                                        | 1.6 | 25        |
| 23 | Phase transitions of αâ€quartz at elevated temperatures under dynamic compression using a<br>membraneâ€driven diamond anvil cell: Clues to impact cratering?. Meteoritics and Planetary Science,<br>2018, 53, 1687-1695.                            | 1.6 | 7         |
| 24 | Evidence for a large Paleozoic Impact Crater Strewn Field in the Rocky Mountains. Scientific Reports, 2018, 8, 13246.                                                                                                                               | 3.3 | 7         |
| 25 | Deriving Morphometric Parameters and the Simpleâ€to omplex Transition Diameter From a<br>Highâ€Resolution, Global Database of Fresh Lunar Impact Craters ( <i>D</i> ≥ ~ 3 km). Journal of<br>Geophysical Research E: Planets, 2018, 123, 2667-2690. | 3.6 | 21        |
| 26 | Subsurface deformation of experimental hypervelocity impacts in quartzite and marble targets.<br>Meteoritics and Planetary Science, 2018, 53, 1733-1755.                                                                                            | 1.6 | 18        |
| 27 | Petrographic investigation of shatter cone melt films recovered from MEMIN impact experiments in sandstone and iSALE modeling of their formation boundary conditions. Meteoritics and Planetary Science, 2018, 53, 1569-1593.                       | 1.6 | 2         |
| 28 | Impact cratering on slopes. Icarus, 2017, 290, 89-95.                                                                                                                                                                                               | 2.5 | 18        |
| 29 | The structural inventory of a small complex impact crater: Jebel Waqf as Suwwan, Jordan. Meteoritics and Planetary Science, 2017, 52, 1351-1370.                                                                                                    | 1.6 | 13        |
| 30 | Reconnaissance survey of the Duolun ring structure in Inner Mongolia: Not an impact structure.<br>Meteoritics and Planetary Science, 2017, 52, 1822-1842.                                                                                           | 1.6 | 3         |
| 31 | On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of<br>Seeberger sandstone and Carrara marble under uniaxial compression. Journal of Structural Geology,<br>2017, 97, 225-236.                      | 2.3 | 39        |
| 32 | Bridging the Gap <scp>III</scp> : Impact cratering in nature, experiment, and modeling. Meteoritics and Planetary Science, 2017, 52, 1281-1284.                                                                                                     | 1.6 | 2         |
| 33 | Highâ€pressure phase transitions of αâ€quartz under nonhydrostatic dynamic conditions: A<br>reconnaissance study at <scp>PETRA III</scp> . Meteoritics and Planetary Science, 2017, 52, 1465-1474.                                                  | 1.6 | 15        |
| 34 | Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims. Meteoritics and Planetary Science, 2017, 52, 2220-2240.                                                                       | 1.6 | 10        |
| 35 | Ries Bunte Breccia revisited: Indications for the presence of water in Itzing and Otting drill cores and implications for the emplacement process. Meteoritics and Planetary Science, 2016, 51, 1203-1222.                                          | 1.6 | 8         |
| 36 | Ejecta thickness and structural rim uplift measurements of Martian impact craters: Implications for<br>the rim formation of complex impact craters. Journal of Geophysical Research E: Planets, 2016, 121,<br>1026-1053.                            | 3.6 | 16        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Formation of shatter cones in MEMIN impact experiments. Meteoritics and Planetary Science, 2016, 51, 1477-1496.                                                                                              | 1.6 | 12        |
| 38 | Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation. Meteoritics and Planetary Science, 2016, 51, 1519-1533.                                              | 1.6 | 12        |
| 39 | Subsurface deformation in hypervelocity cratering experiments into highâ€porosity tuffs. Meteoritics<br>and Planetary Science, 2016, 51, 1849-1870.                                                          | 1.6 | 5         |
| 40 | Saqqar: A 34Âkm diameter impact structure in Saudi Arabia. Meteoritics and Planetary Science, 2015, 50,<br>1925-1940.                                                                                        | 1.6 | 11        |
| 41 | Impact-generated pseudotachylitic breccia in drill core BH-5 Hätberg, Siljan impact structure,<br>Sweden. Gff, 2015, 137, 141-162.                                                                           | 1.2 | 10        |
| 42 | Highâ€resolution studies of doubleâ€layered ejecta craters: Morphology, inherent structure, and a phenomenological formation model. Meteoritics and Planetary Science, 2015, 50, 173-203.                    | 1.6 | 18        |
| 43 | The number of impact craters on Earth: Any room for further discoveries?. Earth and Planetary Science Letters, 2015, 425, 187-192.                                                                           | 4.4 | 78        |
| 44 | The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation, and statistical analyses. Meteoritics and Planetary Science, 2015, 50, 141-171.                             | 1.6 | 22        |
| 45 | Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments. Geochimica Et Cosmochimica Acta, 2014, 133, 257-279.                                            | 3.9 | 32        |
| 46 | Structural geology of impact craters. Journal of Structural Geology, 2014, 62, 156-182.                                                                                                                      | 2.3 | 156       |
| 47 | Scaling of sub-surface deformation in hypervelocity impact experiments on porous sandstone.<br>Tectonophysics, 2014, 634, 171-181.                                                                           | 2.2 | 7         |
| 48 | Impact cratering experiments into quartzite, sandstone and tuff: The effects of projectile size and target properties on spallation. Icarus, 2014, 242, 211-224.                                             | 2.5 | 30        |
| 49 | Ejecta from experimental impact craters: Particle size distribution and fragmentation energy. Icarus, 2014, 237, 131-142.                                                                                    | 2.5 | 40        |
| 50 | In situ measurements of impact-induced pressure waves in sandstone targets. Journal of Geophysical<br>Research E: Planets, 2014, 119, 2177-2187.                                                             | 3.6 | 7         |
| 51 | Particle size distribution and strain rate attenuation in hypervelocity impact and shock recovery experiments. Journal of Structural Geology, 2013, 56, 20-33.                                               | 2.3 | 25        |
| 52 | The Serra da Cangalha impact structure, Brazil: Geological, stratigraphic and petrographic aspects of<br>a recently confirmed impact structure. Journal of South American Earth Sciences, 2013, 45, 316-330. | 1.4 | 14        |
| 53 | The extraâ€large lightâ€gas gun of the Fraunhofer EMI: Applications for impact cratering research.<br>Meteoritics and Planetary Science, 2013, 48, 3-7.                                                      | 1.6 | 33        |
| 54 | Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed<br>from the MEMIN Program. Meteoritics and Planetary Science, 2013, 48, 71-86.                             | 1.6 | 35        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chemical modification of projectile residues and target material in a MEMIN cratering experiment.<br>Meteoritics and Planetary Science, 2013, 48, 134-149.                      | 1.6 | 41        |
| 56 | The MEMIN research unit: Scaling impact cratering experiments in porous sandstones. Meteoritics and Planetary Science, 2013, 48, 8-22.                                          | 1.6 | 69        |
| 57 | Ejection behavior characteristics in experimental cratering in sandstone targets. Meteoritics and<br>Planetary Science, 2013, 48, 33-49.                                        | 1.6 | 28        |
| 58 | Deformation and melting of steel projectiles in hypervelocity cratering experiments. Meteoritics and Planetary Science, 2013, 48, 150-164.                                      | 1.6 | 20        |
| 59 | Crater morphology in sandstone targets: The MEMIN impact parameter study. Meteoritics and Planetary Science, 2013, 48, 50-70.                                                   | 1.6 | 38        |
| 60 | The MEMIN research unit: Experimental impact cratering. Meteoritics and Planetary Science, 2013, 48, 1-2.                                                                       | 1.6 | 13        |
| 61 | Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth.<br>Meteoritics and Planetary Science, 2013, 48, 23-32.                       | 1.6 | 40        |
| 62 | The Ries impact, a double-layer rampart crater on Earth. Geology, 2013, 41, 531-534.                                                                                            | 4.4 | 33        |
| 63 | Geology and impact features of Vargeão Dome, southern Brazil. Meteoritics and Planetary Science, 2012, 47, 51-71.                                                               | 1.6 | 35        |
| 64 | Structural asymmetry in martian impact craters as an indicator for an impact trajectory. Icarus, 2012, 220, 194-204.                                                            | 2.5 | 11        |
| 65 | Feather features: A low-shock-pressure indicator in quartz. Journal of Geophysical Research, 2011, 116,                                                                         | 3.3 | 70        |
| 66 | Impact cratering in sandstone: The MEMIN pilot study on the effect of pore water. Meteoritics and Planetary Science, 2011, 46, 890-902.                                         | 1.6 | 61        |
| 67 | The complex impact structure Serra da Cangalha, Tocantins State, Brazil. Meteoritics and Planetary<br>Science, 2011, 46, 875-889.                                               | 1.6 | 28        |
| 68 | Mechanical twinning in quartz: Shock experiments, impact, pseudotachylites and fault breccias.<br>Tectonophysics, 2011, 510, 69-79.                                             | 2.2 | 36        |
| 69 | The complex impact crater Jebel Waqf as Suwwan in Jordan: Effects of target heterogeneity and impact obliquity on central uplift formation. , 2010, , .                         |     | 23        |
| 70 | Low-angle collision with Earth: The elliptical impact crater Matt Wilson, Northern Territory,<br>Australia. Geology, 2009, 37, 459-462.                                         | 4.4 | 39        |
| 71 | The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage. Meteoritics and Planetary Science, 2009, 44, 985-1000. | 1.6 | 59        |
| 72 | Rim uplift and crater shape in Meteor Crater: Effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research, 2009, 114, .                         | 3.3 | 48        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Midâ€sized complex crater formation in mixed crystallineâ€sedimentary targets: Insight from modeling<br>and observation. Meteoritics and Planetary Science, 2008, 43, 1955-1977.                                     | 1.6  | 79        |
| 74 | Asymmetric signatures in simple craters as an indicator for an oblique impact direction. Meteoritics and Planetary Science, 2008, 43, 2059-2072.                                                                     | 1.6  | 20        |
| 75 | Deep Drilling into the Chesapeake Bay Impact Structure. Science, 2008, 320, 1740-1745.                                                                                                                               | 12.6 | 65        |
| 76 | Upheaval Dome, Utah, USA: Impact origin confirmed. Geology, 2008, 36, 227.                                                                                                                                           | 4.4  | 52        |
| 77 | Reconstruction of the Chicxulub ejecta plume from its deposits in drill core Yaxcopoil-1. Bulletin of the Geological Society of America, 2007, 119, 1151-1167.                                                       | 3.3  | 25        |
| 78 | Coupled effects of impact and orogeny: Is the marine Lockne crater, Sweden, pristine?. Meteoritics and Planetary Science, 2007, 42, 1995-2012.                                                                       | 1.6  | 14        |
| 79 | Ries and Chicxulub: Impact craters on Earth provide insights for Martian ejecta blankets. Meteoritics<br>and Planetary Science, 2006, 41, 1587-1603.                                                                 | 1.6  | 57        |
| 80 | Shockâ€metamorphosed zircon in terrestrial impact craters. Meteoritics and Planetary Science, 2006, 41, 433-454.                                                                                                     | 1.6  | 141       |
| 81 | Structural record of an oblique impact. Earth and Planetary Science Letters, 2006, 248, 43-53.                                                                                                                       | 4.4  | 38        |
| 82 | Target delamination by spallation and ejecta dragging: An example from the Ries crater's periphery.<br>Earth and Planetary Science Letters, 2006, 252, 15-29.                                                        | 4.4  | 28        |
| 83 | Structure and formation of a central uplift: A case study at the Upheaval Dome impact crater, Utah. , 2005, , .                                                                                                      |      | 29        |
| 84 | Experimental shock synthesis of diamonds in a graphite gneiss. Meteoritics and Planetary Science, 2005, 40, 1299-1310.                                                                                               | 1.6  | 14        |
| 85 | Impactâ€related dike breccia lithologies in the ICDP drill core Yaxcopoilâ€1, Chicxulub impact structure,<br>Mexico. Meteoritics and Planetary Science, 2004, 39, 931-954.                                           | 1.6  | 34        |
| 86 | Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep<br>drilling at Yaxcopoilâ€1 and by numerical modeling. Meteoritics and Planetary Science, 2004, 39,<br>1035-1067. | 1.6  | 84        |
| 87 | Structure and impact indicators of the Cretaceous sequence of the ICDP drill core Yaxcopoilâ€1,<br>Chicxulub impact crater, Mexico. Meteoritics and Planetary Science, 2004, 39, 1069-1088.                          | 1.6  | 31        |
| 88 | Numerical simulation of temperature effects at fissures due to shock loading. Meteoritics and Planetary Science, 2003, 38, 1451-1460.                                                                                | 1.6  | 41        |
| 89 | Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the<br>Upheaval Dome structure, Utah. Earth and Planetary Science Letters, 2003, 214, 43-58.                        | 4.4  | 63        |
|    | Faldianusithin accords Contains 2002-20-221                                                                                                                                                                          |      |           |

Folding within seconds. Geology, 2002, 30, 231.

4.4 49

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Dislocation microstructure and phase distribution in a lower crustal shear zone – an example from the Ivrea-Zone, Italy. International Journal of Earth Sciences, 2002, 91, 445-458. | 1.8 | 93        |
| 92 | Processes controlling the shrinkage of porphyroclasts in gabbroic shear zones. Journal of Structural Geology, 2000, 22, 471-487.                                                     | 2.3 | 28        |
| 93 | Identification of ancient impact structures: Low-angle faults and related geological features of crater basements. , 2000, , 279-307.                                                |     | 25        |
| 94 | Radial transpression ridges: A new structural feature of complex impact craters. Meteoritics and Planetary Science, 2000, 35, 1189-1201.                                             | 1.6 | 75        |
| 95 | Experimental generation of shockâ€induced pseudotachylites along lithological interfaces. Meteoritics<br>and Planetary Science, 2000, 35, 1275-1290.                                 | 1.6 | 92        |
| 96 | Stress gradients around porphyroclasts: palaeopiezometric estimates and numerical modelling.<br>Journal of Structural Geology, 1998, 20, 163-173.                                    | 2.3 | 58        |