

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6284708/publications.pdf

Version: 2024-02-01

SI OIN

#	Article	IF	CITATIONS
1	Highly stable lithium anodes from recycled hemp textile. Chemical Communications, 2022, 58, 1946-1949.	2.2	4
2	Synthesis of nitrogen-sulfur co-doped Ti3C2T MXene with enhanced electrochemical properties. Materials Reports Energy, 2022, 2, 100079.	1.7	13
3	Inducing liquid crystallinity in dilute MXene dispersions for facile processing of multifunctional fibers. Journal of Materials Chemistry A, 2022, 10, 4770-4781.	5.2	19
4	Toughening Wet‧pun Silk Fibers by Silk Nanofiber Templating. Macromolecular Rapid Communications, 2022, 43, e2100891.	2.0	11
5	Environmentally stable MXene ink for direct writing flexible electronics. Nanoscale, 2022, 14, 6299-6304.	2.8	6
6	Tough and Fatigue Resistant Cellulose Nanocrystal Stitched Ti ₃ C ₂ T <i>_x</i> MXene Films. Macromolecular Rapid Communications, 2022, 43, e2200114.	2.0	7
7	Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science, 2021, 371, 494-498.	6.0	110
8	A nitrogenous pre-intercalation strategy for the synthesis of nitrogen-doped Ti ₃ C ₂ T _x MXene with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2021, 9, 6393-6401.	5.2	45
9	Sequentially Bridged Ti ₃ C ₂ T <i>_x</i> MXene Sheets for High Performance Applications. Advanced Materials Interfaces, 2021, 8, 2002043.	1.9	23
10	Superelastic Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Hybrid Aerogels for Compression-Resilient Devices. ACS Nano, 2021, 15, 5000-5010.	7.3	139
11	Pore-assisted lithium deposition in hierarchically porous and hollow carbon textile for highly stable lithium anode. Journal of Power Sources, 2021, 489, 229464.	4.0	17
12	Stable Ti ₃ C ₂ T _{<i>x</i>} MXene–Boron Nitride Membranes with Low Internal Resistance for Enhanced Salinity Gradient Energy Harvesting. ACS Nano, 2021, 15, 6594-6603.	7.3	116
13	Development and Applications of MXene-Based Functional Fibers. ACS Applied Materials & Interfaces, 2021, 13, 36655-36669.	4.0	47
14	Ti ₃ C ₂ T _{<i>x</i>} MXene: from dispersions to multifunctional architectures for diverse applications. Materials Horizons, 2021, 8, 2886-2912.	6.4	41
15	Scalable Fabrication of Ti ₃ C ₂ T _{<i>x</i>} MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion. ACS Applied Materials & Interfaces, 2021, 13, 51333-51342.	4.0	20
16	Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting. Joule, 2020, 4, 247-261.	11.7	177
17	2D nanomaterials for electrokinetic power generation. , 2020, , 245-270.		0
18	Freezing Titanium Carbide Aqueous Dispersions for Ultra-long-term Storage. ACS Applied Materials & Interfaces, 2020, 12, 34032-34040.	4.0	136

Si Qin

#	Article	IF	CITATIONS
19	Additive-Free MXene Liquid Crystals and Fibers. ACS Central Science, 2020, 6, 254-265.	5.3	182
20	Scalable Manufacturing of Freeâ€Standing, Strong Ti ₃ C ₂ T <i>_x</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	11.1	613
21	Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation. Nano Energy, 2020, 75, 104954.	8.2	49
22	Ti ₃ C ₂ MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale, 2019, 11, 14712-14719.	2.8	52
23	Ultrafast, Stable Ionic and Molecular Sieving through Functionalized Boron Nitride Membranes. ACS Applied Materials & Interfaces, 2019, 11, 30430-30436.	4.0	25
24	Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers. Global Challenges, 2019, 3, 1900037.	1.8	59
25	Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 2019, 6, 219-249.	6.4	289
26	Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of â~'100 °C. Journal of Materials Chemistry A, 2019, 7, 16339-16346.	5.2	21
27	Shape-tailorable high-energy asymmetric micro-supercapacitors based on plasma reduced and nitrogen-doped graphene oxide and MoO ₂ nanoparticles. Journal of Materials Chemistry A, 2019, 7, 14328-14336.	5.2	34
28	Extending the low temperature operational limit of Li-ion battery to â^'80â€ [−] °C. Energy Storage Materials, 2019, 23, 383-389.	9.5	101
29	Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications. Journal of Materials Chemistry A, 2019, 7, 6401-6410.	5.2	135
30	Highly Conductive Ti ₃ C ₂ T <i>_x</i> MXene Hybrid Fibers for Flexible and Elastic Fiberâ€6haped Supercapacitors. Small, 2019, 15, e1804732.	5.2	171
31	B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8053-8058.	5.2	124
32	Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Advanced Functional Materials, 2018, 28, 1706592.	7.8	144
33	Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy, 2018, 47, 368-373.	8.2	57
34	Elastic Fiber Supercapacitors for Wearable Energy Storage. Macromolecular Rapid Communications, 2018, 39, e1800103.	2.0	30
35	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	5.2	158
36	High and Stable Ionic Conductivity in 2D Nanofluidic Ion Channels between Boron Nitride Layers. Journal of the American Chemical Society, 2017, 139, 6314-6320.	6.6	193

Si Qin

#	Article	IF	CITATIONS
37	Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning. Nanoscale, 2017, 9, 9787-9791.	2.8	89
38	Porous Boron Carbon Nitride Nanosheets as Efficient Metal-Free Catalysts for the Oxygen Reduction Reaction in Both Alkaline and Acidic Solutions. ACS Energy Letters, 2017, 2, 306-312.	8.8	176
39	BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. ACS Applied Materials & Interfaces, 2017, 9, 43163-43170.	4.0	190
40	Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. Journal of Materials Chemistry A, 2016, 4, 1440-1445.	5.2	55
41	Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets. Physical Chemistry Chemical Physics, 2016, 18, 84-88.	1.3	80
42	Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers. Nanoscale Research Letters, 2015, 10, 366.	3.1	28
43	Synthesis of an indium oxide nanoparticle embedded graphene three-dimensional architecture for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2015, 3, 18238-18243.	5.2	24
44	Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nature Communications, 2015, 6, 8849.	5.8	658
45	High N-content holey few-layered graphene electrocatalysts: scalable solvent-less production. Journal of Materials Chemistry A, 2015, 3, 1682-1687.	5.2	39
46	Functionalization of bamboo pulp fabrics with noble metal nanoparticles. Dyes and Pigments, 2015, 113, 289-298.	2.0	63
47	Nanoboron Nitrides. , 2015, , 22-51.		0
48	Large-scale production of h-In2O3/carbon nanocomposites with enhanced lithium storage properties. Electrochimica Acta, 2014, 135, 128-132.	2.6	13
49	Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy, 2014, 6, 219-224.	8.2	210
50	Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water. Scientific Reports, 2014, 4, 4453.	1.6	91
51	In-situ and tunable nitrogen-doping of MoS2 nanosheets. Scientific Reports, 2014, 4, 7582.	1.6	89
52	Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. Chemical Communications, 2013, 49, 352-354.	2.2	110
53	Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities. Journal of Materials Chemistry A, 2013, 1, 5274.	5.2	75
54	Porous boron nitride nanosheets for effective water cleaning. Nature Communications, 2013, 4, 1777.	5.8	831

<u> </u>	Qı	
	U.	
. U.	~ · ·	

#	Article	IF	CITATIONS
55	Synthesis of single-crystal nanoparticles of indium oxide by "urea glass―method and their electrochemical properties. Materials Letters, 2013, 91, 5-8.	1.3	16