Philip M Hopkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6284581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations inRYR1in malignant hyperthermia and central core disease. Human Mutation, 2006, 27, 977-989.	2.5	444
2	Propofol infusion syndrome: a structured literature review and analysis of published case reports. British Journal of Anaesthesia, 2019, 122, 448-459.	3.4	180
3	Malignant hyperthermia: pharmacology of triggering. British Journal of Anaesthesia, 2011, 107, 48-56.	3.4	173
4	European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility. British Journal of Anaesthesia, 2015, 115, 531-539.	3.4	171
5	European Society of Anaesthesiology guidelines on peri-operative use of ultrasound-guided for vascular access (PERSEUS vascular access). European Journal of Anaesthesiology, 2020, 37, 344-376.	1.7	166
6	Core Myopathies and Risk of Malignant Hyperthermia. Anesthesia and Analgesia, 2009, 109, 1167-1173.	2.2	141
7	TNF-α and IL-1β increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium, 2010, 47, 378-386.	2.4	132
8	Malignant Hyperthermia in the Post-Genomics Era. Anesthesiology, 2018, 128, 168-180.	2.5	120
9	Diagnosis and management of malignant hyperthermia. BJA Education, 2017, 17, 249-254.	1.4	119
10	Management of suspected immediate perioperative allergic reactions: an international overview and consensus recommendations. British Journal of Anaesthesia, 2019, 123, e50-e64.	3.4	117
11	The role of CACNA1Sin predisposition to malignant hyperthermia. BMC Medical Genetics, 2009, 10, 104.	2.1	104
12	Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca ²⁺ channel and the type 1 ryanodine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7923-7928.	7.1	88
13	RYR1 mutations causing central core disease are associated with more severe malignant hyperthermia in vitro contracture test phenotypes. Human Mutation, 2002, 20, 88-97.	2.5	76
14	Several interacting genes influence the malignant hyperthermia phenotype. Human Genetics, 2003, 112, 217-218.	3.8	74
15	Next-generation Sequencing of <i>RYR1</i> and <i>CACNA1S</i> in Malignant Hyperthermia and Exertional Heat Illness. Anesthesiology, 2015, 122, 1033-1046.	2.5	70
16	Genetic epidemiology of malignant hyperthermia in the UK. British Journal of Anaesthesia, 2018, 121, 944-952.	3.4	63
17	The use of drug provocation testing in the investigation of suspected immediate perioperative allergic reactions: current status. British Journal of Anaesthesia, 2019, 123, e126-e134.	3.4	62
18	Store-operated Ca2+ Entry in Malignant Hyperthermia-susceptible Human Skeletal Muscle. Journal of Biological Chemistry, 2010, 285, 25645-25653.	3.4	60

#	Article	IF	CITATIONS
19	Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain. American Journal of Human Genetics, 2015, 97, 878-885.	6.2	57
20	Exome Sequencing Reveals Novel Rare Variants in the Ryanodine Receptor and Calcium Channel Genes in Malignant Hyperthermia Families. Anesthesiology, 2013, 119, 1054-1065.	2.5	56
21	Updated guide for the management of malignant hyperthermia. Canadian Journal of Anaesthesia, 2018, 65, 709-721.	1.6	54
22	Consensus clinical scoring for suspected perioperative immediate hypersensitivity reactions. British Journal of Anaesthesia, 2019, 123, e29-e37.	3.4	53
23	Mutation analysis of two patients with hypokalemic periodic paralysis and suspected malignant hyperthermia. Muscle and Nerve, 2004, 30, 114-117.	2.2	47
24	Does regional anaesthesia improve outcome?. British Journal of Anaesthesia, 2015, 115, ii26-ii33.	3.4	47
25	Variant curation expert panel recommendations for RYR1 pathogenicity classifications in malignant hyperthermia susceptibility. Genetics in Medicine, 2021, 23, 1288-1295.	2.4	46
26	Nitrous oxide: a unique drug of continuing importance for anaesthesia. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2005, 19, 381-389.	4.0	45
27	Consensus guidelines on perioperative management of malignant hyperthermia suspected or susceptible patients from the European Malignant Hyperthermia Group. British Journal of Anaesthesia, 2021, 126, 120-130.	3.4	44
28	Genetic mapping of the β1- and γ-subunits of the human skeletal muscle L-type voltage-dependent calcium channel on chromosome 17q and exclusion as candidate genes for malignant hyperthermia susceptibility. Human Molecular Genetics, 1993, 2, 863-868.	2.9	41
29	Skeletal muscle physiology. Continuing Education in Anaesthesia, Critical Care & Pain, 2006, 6, 1-6.	0.6	41
30	Availability of dantrolene for the management of malignant hyperthermia crises: European Malignant Hyperthermia Group guidelines. British Journal of Anaesthesia, 2020, 125, 133-140.	3.4	39
31	Incidence of suspected perioperative anaphylaxis: A multicenter snapshot study. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 454-455.e1.	3.8	38
32	A Mechanism for Statin-Induced Susceptibility to Myopathy. JACC Basic To Translational Science, 2019, 4, 509-523.	4.1	31
33	Is there a link between malignant hyperthermia and exertional heat illness? * COMMENTARY. British Journal of Sports Medicine, 2007, 41, 283-284.	6.7	29
34	A Comparison of 1% Prilocaine with 0.5% Ropivacaine for Outpatient-Based Surgery Under Axillary Brachial Plexus Block. Anesthesia and Analgesia, 2001, 93, 187-191.	2.2	24
35	European Society of Anaesthesiology and Intensive Care Guidelines on peri-operative use of ultrasound for regional anaesthesia (PERSEUS regional anesthesia). European Journal of Anaesthesiology, 2021, 38, 219-250.	1.7	24
36	Investigating the genetic susceptibility to exertional heat illness. Journal of Medical Genetics, 2020, 57, 531-541.	3.2	24

#	Article	IF	CITATIONS
37	Effects of halothane on the transient outward K+ current in rat ventricular myocytes. British Journal of Pharmacology, 2000, 131, 223-230.	5.4	23
38	A <i>RYR1</i> mutation associated with recessive congenital myopathy and dominant malignant hyperthermia in Asian families. Muscle and Nerve, 2009, 40, 633-639.	2.2	23
39	An Analysis of the Predictive Probability of the In Vitro Contracture Test for Determining Susceptibility to Malignant Hyperthermia. Anesthesia and Analgesia, 1997, 84, 648-656.	2.2	22
40	Application of the Continual Reassessment Method to Dose-finding Studies in Regional Anesthesia. Anesthesiology, 2013, 119, 29-35.	2.5	22
41	RYR1-related malignant hyperthermia with marked cerebellar involvement – A paradigm of heat-induced CNS injury?. Neuromuscular Disorders, 2015, 25, 138-140.	0.6	21
42	The Concentration-Dependent Effects of Propofol on Rat Ventricular Myocytes. Anesthesia and Analgesia, 2000, 91, 276-282.	2.2	20
43	Ryanodine receptor leak triggers fiber Ca ²⁺ redistribution to preserve force and elevate basal metabolism in skeletal muscle. Science Advances, 2021, 7, eabi7166.	10.3	20
44	Mg2+Dependence of Halothane-induced Ca2+Release from the Sarcoplasmic Reticulum in Skeletal Muscle from Humans Susceptible to Malignant Hyperthermia. Anesthesiology, 2004, 101, 1339-1346.	2.5	18
45	Genomic Screening for Malignant Hyperthermia Susceptibility. Anesthesiology, 2020, 133, 1277-1282.	2.5	18
46	Effects of Mg2+and SR luminal Ca2+on caffeineâ€induced Ca2+release in skeletal muscle from humans susceptible to malignant hyperthermia. Journal of Physiology, 2002, 544, 85-95.	2.9	17
47	Skeletal muscle microalterations in patients carrying Malignant Hyperthermia-related mutations of the e-c coupling machinery. European Journal of Translational Myology, 2016, 26, 6105.	1.7	17
48	Sugammadex: the sting in the tail?. British Journal of Anaesthesia, 2018, 121, 694-697.	3.4	17
49	DALES, Drug Allergy Labels in Elective Surgical patients: a prospective multicentre cross-sectional study of incidence, risks, and attitudes in penicillin de-labelling strategies. British Journal of Anaesthesia, 2020, 125, 962-969.	3.4	17
50	The Effects of Halothane, Isoflurane, and Sevoflurane on Ca2+ Current and Transient Outward K+ Current in Subendocardial and Subepicardial Myocytes from the Rat Left Ventricle. Anesthesia and Analgesia, 2004, 99, 1615-1622.	2.2	16
51	Anaphylaxis to sugammadex: should we be concerned by the Japanese experience?. British Journal of Anaesthesia, 2020, 124, 370-372.	3.4	16
52	The use of charcoal filters in malignant hyperthermia: have they found their place?. Anaesthesia, 2019, 74, 13-16.	3.8	14
53	Recrudescence of Malignant Hyperthermia. Anesthesiology, 2007, 106, 893-894.	2.5	13
54	Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations. G3: Genes, Genomes, Genetics, 2017, 7, 1451-1461.	1.8	13

#	Article	IF	CITATIONS
55	Malignant hyperthermia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 645-661.	1.8	13
56	Mission Impossible or Mission Futile?. Anesthesiology, 2019, 131, 957-959.	2.5	13
57	Antagonistic Actions of Halothane and Sevoflurane on Spontaneous Ca2+Release in Rat Ventricular Myocytes. Anesthesiology, 2006, 105, 58-64.	2.5	11
58	Permeabilised skeletal muscle reveals mitochondrial deficiency in malignant hyperthermia-susceptible individuals. British Journal of Anaesthesia, 2019, 122, 613-621.	3.4	9
59	Mg 2+ dependence of halothaneâ€induced Ca 2+ release from the sarcoplasmic reticulum in rat skeletal muscle. Journal of Physiology, 2003, 551, 447-454.	2.9	8
60	The Effects of Alfentanil on Cytosolic Ca2+ and Contraction in Rat Ventricular Myocytes. Anesthesia and Analgesia, 2004, 98, 1013-1016.	2.2	7
61	Variants in ASPH cause exertional heat illness and are associated with malignant hyperthermia susceptibility. Nature Communications, 2022, 13, .	12.8	7
62	Thermoregulation and markers of muscle breakdown in malignant hyperthermia susceptible volunteers during an acute heat tolerance test. Journal of Science and Medicine in Sport, 2019, 22, 586-590.	1.3	6
63	Sevoflurane may not be a complete sigh of relief in COVID-19. British Journal of Anaesthesia, 2020, 125, e487-e488.	3.4	6
64	No C1840 to T mutation in RYR1 in malignant hyperthermia. Human Mutation, 1993, 2, 330-330.	2.5	5
65	Malignant hyperthermia in India. Anaesthesia, 2010, 65, 1063-1065.	3.8	5
66	Programmes, guidelines and protocols – the antithesis of precision medicine?. British Journal of Anaesthesia, 2015, 115, 485-487.	3.4	5
67	A multi-dimensional analysis of genotype–phenotype discordance in malignant hyperthermia susceptibility. British Journal of Anaesthesia, 2020, 125, 995-1001.	3.4	5
68	Bioenergetic defects in muscle fibers of RYR1 mutant knock-in mice associated with malignant hyperthermia. Journal of Biological Chemistry, 2020, 295, 15226-15235.	3.4	5
69	Special Issue on suspected perioperative allergic reactions. British Journal of Anaesthesia, 2019, 123, 1-3.	3.4	4
70	Succinylcholine and Dantrolene. Anesthesiology, 2019, 130, 6-8.	2.5	4
71	Molecular Modification of Transient Receptor Potential Canonical 6 Channels Modulates Calcium Dyshomeostasis in a Mouse Model Relevant to Malignant Hyperthermia. Anesthesiology, 2021, 134, 234-247.	2.5	4
72	A retrospective survey of brachial plexus blockade in pediatric hand trauma patients. Paediatric Anaesthesia, 2011, 21, 1166-1168.	1.1	2

#	Article	IF	CITATIONS
73	Mast cell activation tests: a new tool in the investigation of suspected perioperative allergic reactions?. British Journal of Anaesthesia, 2020, 125, 856-859.	3.4	2
74	Epidemiology of perioperative anaphylaxis in the United States: new insights but more to learn and do. British Journal of Anaesthesia, 2021, , .	3.4	1
75	Properties of Store Operated Ca2+ Entry in Malignant Hyperthermia Susceptible Human Skeletal Muscle Fibres. Biophysical Journal, 2010, 98, 711a-712a.	0.5	0
76	Calcium Channel Dysfunction in a Mutant Mouse Model of Malignant Hyperthermia(CaV1.1 R174W). Biophysical Journal, 2015, 108, 504a.	0.5	0
77	Malignant Hyperthermia Susceptibility Mutation Cav1.1 R174W Dramatically Alters RyR1 Single Channel Function. Biophysical Journal, 2015, 108, 270a.	0.5	0
78	In Reply. Anesthesiology, 2016, 124, 511-511.	2.5	0
79	Anaesthetic workload in the UK – room for expansion?. British Journal of Anaesthesia, 2018, 121, 111-114.	3.4	Ο
80	Enhanced extracellular calcium entry in skeletal muscle of malignant hyperthermia susceptible mice and humans. British Journal of Anaesthesia, 2019, 123, e509.	3.4	0
81	Enhancement of Sarcolemmal Calcium Influx in a Novel Mouse Model of Malignant Hyperthermia. Biophysical Journal, 2019, 116, 520a.	0.5	0
82	Multiple Sites of Interaction May Be Involved in the Regulation of CaV1.1 by Stac3. Biophysical Journal, 2019, 116, 523a.	0.5	0