
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6284084/publications.pdf Version: 2024-02-01

LINCWEL XIE

#	Article	IF	CITATIONS
1	Electrospun Nanofibers: New Concepts, Materials, and Applications. Accounts of Chemical Research, 2017, 50, 1976-1987.	7.6	826
2	The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 2009, 30, 354-362.	5.7	420
3	Electrospun nanofibers for neural tissue engineering. Nanoscale, 2010, 2, 35-44.	2.8	328
4	Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro. Pharmaceutical Research, 2006, 23, 1817-1826.	1.7	311
5	Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site. Nano Letters, 2009, 9, 2763-2768.	4.5	310
6	Putting Electrospun Nanofibers to Work for Biomedical Research. Macromolecular Rapid Communications, 2008, 29, 1775-1792.	2.0	309
7	Conductive Core–Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering. Advanced Functional Materials, 2009, 19, 2312-2318.	7.8	305
8	Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Advanced Drug Delivery Reviews, 2018, 132, 188-213.	6.6	285
9	Recent advances in electrospun nanofibers for wound healing. Nanomedicine, 2017, 12, 1335-1352.	1.7	282
10	Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applications. ACS Nano, 2010, 4, 5027-5036.	7.3	268
11	Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chemical Engineering Science, 2015, 125, 32-57.	1.9	240
12	Neurite Outgrowth on Nanofiber Scaffolds with Different Orders, Structures, and Surface Properties. ACS Nano, 2009, 3, 1151-1159.	7.3	236
13	3D Bioprinting: from Benches to Translational Applications. Small, 2019, 15, e1805510.	5.2	235
14	Coating Electrospun Poly(ε-caprolactone) Fibers with Gelatin and Calcium Phosphate and Their Use as Biomimetic Scaffolds for Bone Tissue Engineering. Langmuir, 2008, 24, 14145-14150.	1.6	226
15	Electrohydrodynamic atomization for biodegradable polymeric particle production. Journal of Colloid and Interface Science, 2006, 302, 103-112.	5.0	217
16	"Aligned-to-random―nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale, 2010, 2, 923.	2.8	195
17	Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials, 2006, 27, 3321-3332.	5.7	185
18	Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nature Communications, 2020, 11, 1267.	5.8	158

#	Article	IF	CITATIONS
19	Neurite Outgrowth on Electrospun Nanofibers with Uniaxial Alignment: The Effects of Fiber Density, Surface Coating, and Supporting Substrate. ACS Nano, 2014, 8, 1878-1885.	7.3	157
20	Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. Journal of Colloid and Interface Science, 2008, 317, 469-476.	5.0	149
21	Nanofiber Scaffolds with Gradients in Mineral Content for Spatial Control of Osteogenesis. ACS Applied Materials & Interfaces, 2014, 6, 2842-2849.	4.0	145
22	Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives. Current Pharmaceutical Design, 2015, 21, 1944-1959.	0.9	143
23	Nerve Guidance Conduits Based on Double-Layered Scaffolds of Electrospun Nanofibers for Repairing the Peripheral Nervous System. ACS Applied Materials & Interfaces, 2014, 6, 9472-9480.	4.0	141
24	Dissolvable Microneedles Coupled with Nanofiber Dressings Eradicate Biofilms <i>via</i> Effectively Delivering a Database-Designed Antimicrobial Peptide. ACS Nano, 2020, 14, 11775-11786.	7.3	129
25	Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnology and Bioengineering, 2007, 97, 1278-1290.	1.7	128
26	Binary Doping of Strontium and Copper Enhancing Osteogenesis and Angiogenesis of Bioactive Glass Nanofibers while Suppressing Osteoclast Activity. ACS Applied Materials & Interfaces, 2017, 9, 24484-24496.	4.0	127
27	Electrospray in the dripping mode for cell microencapsulation. Journal of Colloid and Interface Science, 2007, 312, 247-255.	5.0	125
28	Laserâ€Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human–Soft Actuators Interaction. Advanced Materials, 2020, 32, e1908475.	11.1	118
29	Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. Journal of Aerosol Science, 2018, 125, 164-181.	1.8	116
30	Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response. Advanced Healthcare Materials, 2016, 5, 2993-3003.	3.9	114
31	Emerging Roles of Electrospun Nanofibers in Cancer Research. Advanced Healthcare Materials, 2018, 7, e1701024.	3.9	114
32	Expanding Two-Dimensional Electrospun Nanofiber Membranes in the Third Dimension By a Modified Gas-Foaming Technique. ACS Biomaterials Science and Engineering, 2015, 1, 991-1001.	2.6	112
33	Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration. Acta Biomaterialia, 2019, 85, 282-293.	4.1	108
34	Enhancing the Stiffness of Electrospun Nanofiber Scaffolds with a Controlled Surface Coating and Mineralization. Langmuir, 2011, 27, 9088-9093.	1.6	104
35	Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanutsâ€) and their potential applications in hemostasis. Biomaterials, 2018, 179, 46-59.	5.7	96
36	Controlled biomineralization of electrospun poly(ε-caprolactone) fibers to enhance their mechanical properties. Acta Biomaterialia, 2013, 9, 5698-5707.	4.1	91

#	Article	IF	CITATIONS
37	New forms of electrospun nanofiber materials for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 3733-3746.	2.9	90
38	Self-Assembled Biodegradable Nanoparticles Developed by Direct Dialysis for the Delivery of Paclitaxel. Pharmaceutical Research, 2005, 22, 2079-2090.	1.7	84
39	Bioprinting: 3D Bioprinting: from Benches to Translational Applications (Small 23/2019). Small, 2019, 15, 1970126.	5.2	84
40	Novel 3D Hybrid Nanofiber Aerogels Coupled with BMPâ€2 Peptides for Cranial Bone Regeneration. Advanced Healthcare Materials, 2018, 7, e1701415.	3.9	78
41	Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomaterialia, 2020, 108, 153-167.	4.1	74
42	CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomaterialia, 2018, 68, 237-248.	4.1	72
43	Biodegradable microparticles and fiber fabrics for sustained delivery of cisplatin to treat C6 glioma <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2008, 85A, 897-908.	2.1	68
44	Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration. Nanomedicine, 2013, 8, 1459-1481.	1.7	65
45	Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties. Journal of Materials Chemistry B, 2021, 9, 7182-7195.	2.9	65
46	Electrospraying Electrospun Nanofiber Segments into Injectable Microspheres for Potential Cell Delivery. ACS Applied Materials & Interfaces, 2018, 10, 25069-25079.	4.0	64
47	Submicron bioactive glass tubes for bone tissue engineering. Acta Biomaterialia, 2012, 8, 811-819.	4.1	59
48	Three-Dimensional Objects Consisting of Hierarchically Assembled Nanofibers with Controlled Alignments for Regenerative Medicine. Nano Letters, 2019, 19, 2059-2065.	4.5	56
49	Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration. Biomaterials, 2014, 35, 630-641.	5.7	51
50	Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1435-1445.	1.7	49
51	Converting 2D Nanofiber Membranes to 3D Hierarchical Assemblies with Structural and Compositional Gradients Regulates Cell Behavior. Advanced Materials, 2020, 32, e2003754.	11.1	49
52	Nanofiber Dressings Topically Delivering Molecularly Engineered Human Cathelicidin Peptides for the Treatment of Biofilms in Chronic Wounds. Molecular Pharmaceutics, 2019, 16, 2011-2020.	2.3	42
53	Nanofiber Membranes with Controllable Microwells and Structural Cues and Their Use in Forming Cell Microarrays and Neuronal Networks. Small, 2011, 7, 293-297.	5.2	39
54	Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. Science Advances, 2021, 7, .	4.7	39

#	Article	IF	CITATIONS
55	3D Hybrid Nanofiber Aerogels Combining with Nanoparticles Made of a Biocleavable and Targeting Polycation and MiRâ€26a for Bone Repair. Advanced Functional Materials, 2020, 30, 2005531.	7.8	34
56	Bioinspired elastomer composites with programmed mechanical and electrical anisotropies. Nature Communications, 2022, 13, 524.	5.8	34
57	Biodegradable Films Developed by Electrospray Deposition for Sustained Drug Delivery. Journal of Pharmaceutical Sciences, 2008, 97, 3109-3122.	1.6	33
58	Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications. Applied Physics Reviews, 2020, 7, 021406.	5.5	33
59	Freeze asting with 3Dâ€Printed Templates Creates Anisotropic Microchannels and Patterned Macrochannels within Biomimetic Nanofiber Aerogels for Rapid Cellular Infiltration. Advanced Healthcare Materials, 2021, 10, e2100238.	3.9	33
60	Fabrication of Nanofiber Scaffolds With Gradations in Fiber Organization and Their Potential Applications. Macromolecular Bioscience, 2012, 12, 1336-1341.	2.1	30
61	Simultaneous Delivery of Multiple Antimicrobial Agents by Biphasic Scaffolds for Effective Treatment of Wound Biofilms. Advanced Healthcare Materials, 2021, 10, e2100135.	3.9	29
62	Fabrication of Novel 3D Nanofiber Scaffolds with Anisotropic Property and Regular Pores and Their Potential Applications. Advanced Healthcare Materials, 2012, 1, 674-678.	3.9	27
63	Local Sustained Delivery of 25-Hydroxyvitamin D3 for Production of Antimicrobial Peptides. Pharmaceutical Research, 2015, 32, 2851-2862.	1.7	26
64	Engineering Biomimetic Nanofiber Microspheres with Tailored Size, Predesigned Structure, and Desired Composition via Gas Bubble–Mediated Coaxial Electrospray. Small, 2020, 16, e1907393.	5.2	26
65	Dual Delivery of Alendronate and E7-BMP-2 Peptide via Calcium Chelation to Mineralized Nanofiber Fragments for Alveolar Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 2368-2375.	2.6	25
66	Proliferation of Genetically Modified Human Cells on Electrospun Nanofiber Scaffolds. Molecular Therapy - Nucleic Acids, 2012, 1, e59.	2.3	24
67	Thermally Triggered Mechanically Destructive Electronics Based On Electrospun Poly(ε-caprolactone) Nanofibrous Polymer Films. Scientific Reports, 2017, 7, 947.	1.6	24
68	A mouse model for vitamin D-induced human cathelicidin antimicrobial peptide gene expression. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105552.	1.2	24
69	Ultra-absorptive Nanofiber Swabs for Improved Collection and Test Sensitivity of SARS-CoV-2 and other Biological Specimens. Nano Letters, 2021, 21, 1508-1516.	4.5	24
70	Short and Robust Anti-Infective Lipopeptides Engineered Based on the Minimal Antimicrobial Peptide KR12 of Human LL-37. ACS Infectious Diseases, 2021, 7, 1795-1808.	1.8	24
71	Electric field controlled electrospray deposition for precise particle pattern and cell pattern formation. AICHE Journal, 2010, 56, 2607-2621.	1.8	23
72	Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering. Advanced Biology, 2019, 3, e1900137.	3.0	23

#	Article	IF	CITATIONS
73	Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns. ACS Applied Materials & Interfaces, 2018, 10, 18499-18506.	4.0	22
74	Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 22, 102081.	1.7	22
75	Three-dimensional nanofiber scaffolds with arrayed holes for engineering skin tissue constructs. MRS Communications, 2017, 7, 361-366.	0.8	21
76	Eluted 25-hydroxyvitamin D3 from radially aligned nanofiber scaffolds enhances cathelicidin production while reducing inflammatory response in human immune system-engrafted mice. Acta Biomaterialia, 2019, 97, 187-199.	4.1	20
77	Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue models in vitro. Biofabrication, 2020, 12, 045027.	3.7	20
78	Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for Janus on-skin electronics and soft actuators. Science Advances, 2022, 8, .	4.7	20
79	1α,25-dihydroxyvitamin D ₃ -eluting nanofibrous dressings induce endogenous antimicrobial peptide expression. Nanomedicine, 2018, 13, 1417-1432.	1.7	19
80	Nanoparticulate Formulations for Paclitaxel Delivery Across MDCK Cell Monolayer. Current Pharmaceutical Design, 2010, 16, 2331-2340.	0.9	17
81	Nanofiber-based sutures induce endogenous antimicrobial peptide. Nanomedicine, 2017, 12, 2597-2609.	1.7	16
82	Minimally Invasive Delivery of 3D Shape Recoverable Constructs with Ordered Structures for Tissue Repair. ACS Biomaterials Science and Engineering, 2021, 7, 2204-2211.	2.6	16
83	Electrostatic Flocking of Insulative and Biodegradable Polymer Microfibers for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100766.	3.9	14
84	3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration. Applied Materials Today, 2022, 27, 101510.	2.3	13
85	Electrostatic flocking of salt-treated microfibers and nanofiber yarns for regenerative engineering. Materials Today Bio, 2021, 12, 100166.	2.6	11
86	Periosteum Mimetic Coating on Structural Bone Allografts <i>via</i> Electrospray Deposition Enhances Repair and Reconstruction of Segmental Defects. ACS Biomaterials Science and Engineering, 2020, 6, 6241-6252.	2.6	10
87	Advances in Modeling Alzheimer's Disease In Vitro. Advanced NanoBiomed Research, 2021, 1, 2100097.	1.7	10
88	Highly controlled coating of strontiumâ€doped hydroxyapatite on electrospun poly(É›â€caprolactone) fibers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 753-763.	1.6	9
89	Largeâ€scale synthesis of compressible and reâ€expandable threeâ€dimensional nanofiber matrices. Nano Select, 2021, 2, 1566-1579.	1.9	7
90	Understanding and utilizing textile-based electrostatic flocking for biomedical applications. Applied Physics Reviews, 2021, 8, 041326.	5.5	7

#	Article	IF	CITATIONS
91	Nanofiber capsules for minimally invasive sampling of biological specimens from gastrointestinal tract. Acta Biomaterialia, 2022, 146, 211-221.	4.1	5
92	Identification of metabolic pathways underlying FGF1 and CHIR99021-mediated cardioprotection. IScience, 2022, 25, 104447.	1.9	5
93	Nanofiber Microspheres: Engineering Biomimetic Nanofiber Microspheres with Tailored Size, Predesigned Structure, and Desired Composition via Gas Bubble–Mediated Coaxial Electrospray (Small) Tj ETQ	9q15120.784	1344 rgBT /(
94	Electrospun Nanofibers for Wound Management. ChemNanoMat, 0, , .	1.5	4
95	Codelivery of 1α,25-Dihydroxyvitamin D ₃ and CYP24A1 Inhibitor VID400 by Nanofiber Dressings Promotes Endogenous Antimicrobial Peptide LL-37 Induction. Molecular Pharmaceutics, 2022, 19, 974-984.	2.3	4
96	Expansion of Two-dimension Electrospun Nanofiber Mats into Three-dimension Scaffolds. Journal of Visualized Experiments, 2019, , .	0.2	3
97	Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization. Journal of Visualized Experiments, 2015, , .	0.2	2
98	Bone Regeneration: Novel 3D Hybrid Nanofiber Aerogels Coupled with BMPâ€2 Peptides for Cranial Bone Regeneration (Adv. Healthcare Mater. 10/2018). Advanced Healthcare Materials, 2018, 7, 1870042.	3.9	1
99	3D Printed Scaffolds: Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering (Adv. Biosys. 12/2019). Advanced Biology, 2019, 3, 1970122.	3.0	1
100	Cell Scaffolds: Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response (Adv. Healthcare Mater. 23/2016). Advanced Healthcare Materials, 2016, 5, 2962-2962.	3.9	0
101	Electrospun nanofiber matrix for tissue repair and regeneration. , 2022, , 175-191.		0
102	Cover Feature: Electrospun Nanofibers for Wound Management (ChemNanoMat 7/2022). ChemNanoMat, 2022, 8, .	1.5	0