Agne Zukauskaite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6283725/publications.pdf

Version: 2024-02-01

40 papers

1,055 citations

471509 17 h-index 30 g-index

41 all docs

41 docs citations

times ranked

41

764 citing authors

#	Article	IF	Citations
1	Increased electromechanical coupling in wâ^'ScxAl1â^'xN. Applied Physics Letters, 2010, 97, .	3.3	149
2	Wurtzite structure $Sc1\hat{a}^{\circ}$ xAlxN solid solution films grown by reactive magnetron sputter epitaxy: Structural characterization and first-principles calculations. Journal of Applied Physics, 2010, 107, .	2.5	122
3	Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAllâ^'xN thin films. Journal of Applied Physics, 2012, 111, .	2.5	93
4	Anomalously high thermoelectric power factor in epitaxial ScN thin films. Applied Physics Letters, 2011, 99, .	3.3	84
5	Elastic modulus and coefficient of thermal expansion of piezoelectric Al _{1\hat{a}^{\prime}x} Sc _x N (up to x = 0.41) thin films. APL Materials, 2018, 6, 076105.	5.1	71
6	Experimental determination of the electro-acoustic properties of thin film AlScN using surface acoustic wave resonators. Journal of Applied Physics, 2019, 126, .	2.5	65
7	Metalâ€Organic Chemical Vapor Deposition of Aluminum Scandium Nitride. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900535.	2.4	54
8	Optical constants and band gap of wurtzite Al1â^'xScxN/Al2O3 prepared by magnetron sputter epitaxy for scandium concentrations up to x = 0.41. Journal of Applied Physics, 2019, 126, .	2.5	46
9	Y _x Al _{1â^'x} N thin films. Journal Physics D: Applied Physics, 2012, 45, 422001.	2.8	42
10	Surface Morphology and Microstructure of Pulsed DC Magnetron Sputtered Piezoelectric AlN and AlScN Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700559.	1.8	42
11	Microstructure and mechanical properties of stress-tailored piezoelectric AlN thin films for electro-acoustic devices. Applied Surface Science, 2017, 407, 307-314.	6.1	34
12	Enhanced electromechanical coupling in SAW resonators based on sputtered non-polar Al0.77Sc0.23N $112 \hat{A}^-$ thin films. Applied Physics Letters, 2020, 116, .	3.3	28
13	Temperature Dependence of the Pyroelectric Coefficient of AlScN Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700831.	1.8	24
14	Ab initio calculations and experimental study of piezoelectric Y $\ln 1\hat{a}^{2}$ N thin films deposited using reactive magnetron sputter epitaxy. Acta Materialia, 2016, 105, 199-206.	7.9	20
15	Stabilization of wurtzite Sc0.4Al0.6N in pseudomorphic epitaxial Sc Al1â°'N/In Al1â°'N superlattices. Acta Materialia, 2015, 94, 101-110.	7.9	19
16	Stability and residual stresses of sputtered wurtzite AlScN thin films. Physical Review Materials, 2021, 5, .	2.4	19
17	Analysis and optimization of sputter deposited AlN-layers for flexural plate wave devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	18
18	Nanoprobe mechanical and piezoelectric characterization of $Scx+1$a^*xN(0001) thin films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 666-673.$	1.8	15

#	Article	IF	Citations
19	Infrared dielectric functions and optical phonons of wurtzite Y _{<i>x</i>} Al _{1â^'<i>x</i>} N (0  ⩽  ci>xàꀉ   â€ 48, 415102.	&D &2).	Jou ra al Physic
20	Thin-Film-Based SAW Magnetic Field Sensors. Sensors, 2021, 21, 8166.	3.8	12
21	Bandgap Engineering and Optical Constants of YxAl1-xN Alloys. Japanese Journal of Applied Physics, 2013, 52, 08JM02.	1.5	11
22	Piezoelectric characterization of Sc _{0.26} Al _{0.74} N layers on Si (001) substrates. Materials Research Express, 2018, 5, 036407.	1.6	10
23	Formation of icosahedron twins during initial stages of heteroepitaxial diamond nucleation and growth. Journal of Applied Physics, 2019, 125, .	2.5	10
24	Enhanced actuation of nanocrystalline diamond microelectromechanical disk resonators with AlN layers. Applied Physics Letters, 2016, 108, .	3.3	9
25	Pulsed laser deposition of ferroelectric potassium tantalate-niobate optical waveguiding thin films. Optical Materials Express, 2018, 8, 541.	3.0	9
26	Properties of higher-order surface acoustic wave modes in Al1 \hat{a} ' <i>x</i> Sc <i>x</i> N/sapphire structures. Journal of Applied Physics, 2021, 130, .	2.5	8
27	Investigation of Temperature Characteristics and Substrate Influence on AlScN-Based SAW Resonators. , 2018, , .		7
28	Finite Element Analysis of SAW Propagation Characteristics in c-plane (0001) and a-plane (11-20) AlScN Thin Films. , 2019, , .		6
29	Flexural plate wave sensors with buried IDT for sensing in liquids. , 2017, , .		4
30	Temperature Cross-Sensitivity of AlN-Based Flexural Plate Wave Sensors. IEEE Sensors Journal, 2018, 18, 7810-7818.	4.7	4
31	Nanodiamond resonators fabricated on 8″ Si substrates using adhesive wafer bonding. Journal of Micromechanics and Microengineering, 2017, 27, 065011.	2.6	2
32	Novel Method for Extracting Material Constants of Epitaxial Wurtzite AlScN Films on Sapphire Using Higher Order Surface Acoustic Wave Modes., 2020,,.		2
33	Static High Voltage Actuation of Piezoelectric AlN and AlScN Based Scanning Micromirrors. Micromachines, 2022, 13, 625.	2.9	2
34	Potassium tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics. Journal of Physics: Conference Series, 2017, 867, 012020.	0.4	1
35	In-Plane Oriented Stacks of c-AlScN/Mo (110) for BAW Resonators Grown by Magnetron Sputter Epitaxy. , 2020, , .		1
36	Potassium-tantalate-niobate mixed crystal thin films for applications in nonlinear integrated optics., 2017,,.		0

#	Article	IF	CITATIONS
37	Experimental determination of Al1-xScxN thin film thermo-electro-acoustic properties up to 140ŰC by using SAW resonators. , 2019, , .		0
38	Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method. Lithuanian Journal of Physics, 2007, 47, 97-101.	0.4	0
39	Non-Polar a-plane AlScN($\$11$ overline $\{2\}0\$$) Thin Film Based SAW Resonators with Significantly Improved Electromechanical Coupling. , 2020, , .		0
40	Determining Elastic Constants of AlScN Films on Silicon Substrates by Laser Ultrasonics. , 2020, , .		0