
Dmitry Lyumkis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6283418/publications.pdf Version: 2024-02-01

DMITDY LVIIMKIS

#	Article	IF	CITATIONS
1	Appion: An integrated, database-driven pipeline to facilitate EM image processing. Journal of Structural Biology, 2009, 166, 95-102.	1.3	848
2	Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1477-1483.	6.0	793
3	Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nature Methods, 2017, 14, 793-796.	9.0	708
4	Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1484-1490.	6.0	662
5	Movies of Ice-Embedded Particles Enhance Resolution in Electron Cryo-Microscopy. Structure, 2012, 20, 1823-1828.	1.6	277
6	Challenges and opportunities in cryo-EM single-particle analysis. Journal of Biological Chemistry, 2019, 294, 5181-5197.	1.6	273
7	Likelihood-based classification of cryo-EM images using FREALIGN. Journal of Structural Biology, 2013, 183, 377-388.	1.3	241
8	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature, 2017, 547, 360-363.	13.7	217
9	Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Cell, 2018, 175, 212-223.e17.	13.5	195
10	Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science, 2017, 355, 89-92.	6.0	166
11	Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell, 2016, 167, 1610-1622.e15.	13.5	163
12	Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15981-15986.	3.3	111
13	Model Building and Refinement of a Natively Glycosylated HIV-1 Env Protein by High-Resolution Cryoelectron Microscopy. Structure, 2015, 23, 1943-1951.	1.6	93
14	Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature, 2016, 530, 358-361.	13.7	88
15	Structural basis for strand-transfer inhibitor binding to HIV intasomes. Science, 2020, 367, 810-814.	6.0	74
16	Sub-2 à Ewald curvature corrected structure of an AAV2 capsid variant. Nature Communications, 2018, 9, 3628.	5.8	73
17	A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. ELife, 2014, 3, .	2.8	65
18	Structural Basis for the Activation of IKK1/Î \pm . Cell Reports, 2016, 17, 1907-1914.	2.9	47

DMITRY LYUMKIS

#	Article	IF	CITATIONS
19	A Toolbox for ab initio 3-D reconstructions in single-particle electron microscopy. Journal of Structural Biology, 2010, 169, 389-398.	1.3	46
20	Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs. Viruses, 2021, 13, 205.	1.5	42
21	Cryo-EM Structures of a Group II Intron Reverse Splicing into DNA. Cell, 2019, 178, 612-623.e12.	13.5	41
22	HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors. ELife, 2019, 8, .	2.8	41
23	Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1702-1707.	3.3	38
24	Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focused classification. Ultramicroscopy, 2019, 203, 170-180.	0.8	35
25	Non-uniformity of projection distributions attenuates resolution in Cryo-EM. Progress in Biophysics and Molecular Biology, 2020, 150, 160-183.	1.4	35
26	Structural Biology of HIV Integrase Strand Transfer Inhibitors. Trends in Pharmacological Sciences, 2020, 41, 611-626.	4.0	25
27	Allosteric Regulation of DNA Cleavage and Sequence-Specificity through Run-On Oligomerization. Structure, 2013, 21, 1848-1858.	1.6	23
28	Automation in Single-Particle Electron Microscopy. Methods in Enzymology, 2010, 483, 291-338.	0.4	22
29	Optimod – An automated approach for constructing and optimizing initial models for single-particle electron microscopy. Journal of Structural Biology, 2013, 184, 417-426.	1.3	22
30	SrmB Rescues Trapped Ribosome Assembly Intermediates. Journal of Molecular Biology, 2020, 432, 978-990.	2.0	21
31	Molecular determinants for dsDNA translocation by the transcription-repair coupling and evolvability factor Mfd. Nature Communications, 2020, 11, 3740.	5.8	21
32	HIV-1 Integrase Inhibitors That Are Active against Drug-Resistant Integrase Mutants. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	21
33	Evaluating Local and Directional Resolution of Cryo-EM Density Maps. Methods in Molecular Biology, 2021, 2215, 161-187.	0.4	19
34	Tools for visualizing and analyzing Fourier space sampling in Cryo-EM. Progress in Biophysics and Molecular Biology, 2021, 160, 53-65.	1.4	15
35	HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants. ACS Infectious Diseases, 2021, 7, 1469-1482.	1.8	14
36	Quantitative mining of compositional heterogeneity in cryo-EM datasets of ribosome assembly intermediates. Structure, 2022, 30, 498-509.e4.	1.6	14

DMITRY LYUMKIS

#	Article	IF	CITATIONS
37	Mechanism of Filamentation-Induced Allosteric Activation of the SgrAl Endonuclease. Structure, 2019, 27, 1497-1507.e3.	1.6	13
38	Multivalent interactions essential for lentiviral integrase function. Nature Communications, 2022, 13, 2416.	5.8	12
39	Single-particle cryoEM analysis at near-atomic resolution from several thousand asymmetric subunits. Journal of Structural Biology, 2015, 192, 235-244.	1.3	9
40	Retroviral integrase: Structure, mechanism, and inhibition. The Enzymes, 2021, 50, 249-300.	0.7	8
41	Pretransition state and apo structures of the filament-forming enzyme SgrAI elucidate mechanisms of activation and substrate specificity. Journal of Biological Chemistry, 2022, 298, 101760.	1.6	3
42	Large-Scale 3D Heterogeneity Analysis of CryoEM Data Using Likelihood-Based Classification in Frealign. Microscopy and Microanalysis, 2015, 21, 1201-1202.	0.2	0
43	Structures, Mechanism, and Functional Relevance of Filament Formation by SgrAl. FASEB Journal, 2022, 36, .	0.2	0