Keith E Mostov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282896/publications.pdf

Version: 2024-02-01

166 papers 17,962 citations

69 h-index 130 g-index

211 all docs

211 docs citations

times ranked

211

15551 citing authors

#	Article	IF	CITATIONS
1	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	16.1	1,195
2	From cells to organs: building polarized tissue. Nature Reviews Molecular Cell Biology, 2008, 9, 887-901.	16.1	695
3	An Fc receptor structurally related to MHC class I antigens. Nature, 1989, 337, 184-187.	13.7	683
4	PTEN-Mediated Apical Segregation of Phosphoinositides Controls Epithelial Morphogenesis through Cdc42. Cell, 2007, 128, 383-397.	13.5	653
5	A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell, 2006, 9, 341-349.	7.7	575
6	Building epithelial architecture: insights from three-dimensional culture models. Nature Reviews Molecular Cell Biology, 2002, 3, 531-537.	16.1	554
7	A molecular network for de novo generation of the apical surface and lumen. Nature Cell Biology, 2010, 12, 1035-1045.	4.6	529
8	The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature, 1984, 308, 37-43.	13.7	518
9	Transepithelial Transport of Immunoglobulins. Annual Review of Immunology, 1994, 12, 63-84.	9.5	434
10	Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biology, 2001, 3, 831-838.	4.6	416
11	The Polymeric Immunoglobulin Receptor Translocates Pneumococci across Human Nasopharyngeal Epithelial Cells. Cell, 2000, 102, 827-837.	13.5	365
12	Membrane traffic in polarized epithelial cells. Current Opinion in Cell Biology, 2000, 12, 483-490.	2.6	357
13	\hat{l}^2 1-Integrin Orients Epithelial Polarity via Rac1 and Laminin. Molecular Biology of the Cell, 2005, 16, 433-445.	0.9	317
14	Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell, 1986, 46, 613-621.	13.5	310
15	An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell, 1991, 66, 65-75.	13.5	303
16	Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biology, 2003, 5, 287-293.	4.6	290
17	Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature Cell Biology, 2006, 8, 963-970.	4.6	267
18	Regulation of cell polarity during epithelial morphogenesis. Current Opinion in Cell Biology, 2008, 20, 227-234.	2.6	236

#	Article	IF	Citations
19	Epithelial polarity and tubulogenesis in vitro. Trends in Cell Biology, 2003, 13, 169-176.	3.6	230
20	Genetic control of single lumen formation in the zebrafish gut. Nature Cell Biology, 2007, 9, 954-960.	4.6	227
21	NH2-terminal Deletion of \hat{l}^2 -Catenin Results in Stable Colocalization of Mutant \hat{l}^2 -Catenin with Adenomatous Polyposis Coli Protein and Altered MDCK Cell Adhesion. Journal of Cell Biology, 1997, 136, 693-706.	2.3	213
22	Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell, 1986, 47, 359-364.	13.5	212
23	Molecular Regulation of Lumen Morphogenesis. Current Biology, 2011, 21, R126-R136.	1.8	211
24	Morphogenetic Mechanisms of Epithelial Tubulogenesis: MDCK Cell Polarity Is Transiently Rearranged without Loss of Cell–Cell Contact during Scatter Factor/Hepatocyte Growth Factor-Induced Tubulogenesis. Developmental Biology, 1998, 204, 64-79.	0.9	204
25	Exocytosis: The Many Masters of the Exocyst. Current Biology, 2002, 12, R212-R214.	1.8	204
26	Redundant and Distinct Functions for Dynamin-1 and Dynamin-2 Isoforms. Journal of Cell Biology, 1998, 143, 1871-1881.	2.3	197
27	Cell-Polarity Dynamics Controls the Mechanism of Lumen Formation in Epithelial Morphogenesis. Current Biology, 2008, 18, 507-513.	1.8	190
28	A Molecular Switch for the Orientation of Epithelial Cell Polarization. Developmental Cell, 2014, 31, 171-187.	3.1	175
29	EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. Journal of Cell Science, 2007, 120, 1818-1828.	1.2	174
30	The SNARE Machinery Is Involved in Apical Plasma Membrane Trafficking in MDCK Cells. Journal of Cell Biology, 1998, 141, 1503-1513.	2.3	169
31	Transcytosis. Cell, 1985, 43, 389-390.	13.5	168
32	Rab GTPase–Myo5B complexes control membrane recycling and epithelial polarization. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2789-2794.	3.3	168
33	Phosphoinositides in Cell Architecture. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004796-a004796.	2.3	158
34	Liver Progenitor Cells Develop Cholangiocyte-Type Epithelial Polarity in Three-dimensional Culture. Molecular Biology of the Cell, 2007, 18, 1472-1479.	0.9	152
35	Definition of Distinct Compartments in Polarized Madin-Darby Canine Kidney (MDCK) Cells for Membrane-Volume Sorting, Polarized Sorting and Apical Recycling. Traffic, 2000, 1, 124-140.	1.3	149
36	A model for structural similarity between different SNARE complexes based on sequence relationships. Trends in Cell Biology, 1998, 8, 260-262.	3.6	142

#	Article	IF	Citations
37	ERK and MMPs Sequentially Regulate Distinct Stages of Epithelial Tubule Development. Developmental Cell, 2004, 7, 21-32.	3.1	142
38	Exocyst Is Involved in Cystogenesis and Tubulogenesis and Acts by Modulating Synthesis and Delivery of Basolateral Plasma Membrane and Secretory Proteins. Molecular Biology of the Cell, 2000, 11, 4259-4275.	0.9	138
39	Slug Is Required for Cell Survival during Partial Epithelial-Mesenchymal Transition of HGF-induced Tubulogenesis. Molecular Biology of the Cell, 2007, 18, 1943-1952.	0.9	135
40	The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biology, 2004, 6, 763-769.	4.6	134
41	Regulation of protein traffic in polarized epithelial cells. BioEssays, 1995, 17, 129-138.	1.2	132
42	Pili Binding to Asialo-GM1 on Epithelial Cells Can Mediate Cytotoxicity or Bacterial Internalization by <i>Pseudomonas aeruginosa</i> <inspace 10<="" td="" =""><td>1.0</td><td>130</td></inspace>	1.0	130
43	Dynamics of \hat{l}^2 -Catenin Interactions with APC Protein Regulate Epithelial Tubulogenesis. Journal of Cell Biology, 1997, 137, 1651-1662.	2.3	125
44	Apical and Basolateral Endocytic Pathways of MDCK Cells Meet in Acidic Common Endosomes Distinct from a Nearly-Neutral Apical Recycling Endosome. Traffic, 2000, 1, 480-493.	1.3	125
45	Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells. Nature Cell Biology, 2012, 14, 838-849.	4.6	124
46	Parasympathetic Innervation Regulates Tubulogenesis in the Developing Salivary Gland. Developmental Cell, 2014, 30, 449-462.	3.1	124
47	Identification of Pseudomonas aeruginosa genes required for epithelial cell injury. Molecular Microbiology, 1997, 24, 1249-1262.	1.2	123
48	Polarity in Mammalian Epithelial Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2013, 5, a013789-a013789.	2.3	123
49	The Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. Journal of Cell Biology, 2010, 189, 725-738.	2.3	121
50	Apical targeting in polarized epithelial cells: There's more afloat than rafts. Trends in Cell Biology, 1997, 7, 393-399.	3.6	117
51	Caveolin-1 Inhibits Epidermal Growth Factor-stimulated Lamellipod Extension and Cell Migration in Metastatic Mammary Adenocarcinoma Cells (MTLn3). Journal of Biological Chemistry, 2000, 275, 20717-20725.	1.6	109
52	Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis. Cellular Microbiology, 2000, 2, 627-637.	1.1	107
53	Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity. EMBO Reports, 2008, 9, 923-929.	2.0	106
54	Targeting of SNAP-23 and SNAP-25 in Polarized Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 3422-3430.	1.6	98

#	Article	IF	CITATIONS
55	Defects in Type III Secretion Correlate with Internalization of <i>Pseudomonas aeruginosa</i> by Epithelial Cells. Infection and Immunity, 1998, 66, 1413-1420.	1.0	96
56	Induced Expression of Rnd3 Is Associated with Transformation of Polarized Epithelial Cells by the Raf–MEK–Extracellular Signal-Regulated Kinase Pathway. Molecular and Cellular Biology, 2000, 20, 9364-9375.	1.1	96
57	Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. Journal of Cell Biology, 2007, 177, 21-27.	2.3	95
58	Hepatocyte Growth Factor Switches Orientation of Polarity and Mode of Movement during Morphogenesis of Multicellular Epithelial Structures. Molecular Biology of the Cell, 2003, 14, 748-763.	0.9	93
59	Caspase induction by IgA antimitochondrial antibody: IgA-mediated biliary injury in primary biliary cirrhosis. Hepatology, 2004, 39, 1415-1422.	3.6	93
60	Formation of Cysts by Alveolar Type II Cells in Three-dimensional Culture Reveals a Novel Mechanism for Epithelial Morphogenesis. Molecular Biology of the Cell, 2007, 18, 1693-1700.	0.9	91
61	The SRC Family Protein Tyrosine Kinase p62 yes Controls Polymeric IgA Transcytosis In Vivo. Molecular Cell, 1999, 4, 627-632.	4.5	87
62	Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25. Molecular Biology of the Cell, 2012, 23, 2845-2855.	0.9	85
63	Long-term culture of hepatic progenitors derived from mouse Dlk+ hepatoblasts. Journal of Cell Science, 2004, 117, 6425-6434.	1.2	83
64	Direct Interaction between Rab3b and the Polymeric Immunoglobulin Receptor Controls Ligand-Stimulated Transcytosis in Epithelial Cells. Developmental Cell, 2002, 2, 219-228.	3.1	82
65	The Exocyst Affects Protein Synthesis by Acting on the Translocation Machinery of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2003, 278, 20954-20960.	1.6	81
66	Chapter 13 Expression and Analysis of the Polymeric Immunoglobulin Receptor in Madin—Darby Canine Kidney Cells Using Retroviral Vectors. Methods in Cell Biology, 1989, 32, 329-337.	0.5	78
67	Protease-activated Receptor-1 Down-regulation. Journal of Biological Chemistry, 2000, 275, 31255-31265.	1.6	76
68	A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biology, 2010, 12, 1143-1153.	4.6	76
69	Polarity proteins PAR6 and aPKC regulate cell death through GSK-3β in 3D epithelial morphogenesis. Journal of Cell Science, 2007, 120, 2309-2317.	1.2	73
70	Hepatocyte Growth Factor Alters the Polarity of Madin-Darby Canine Kidney Cell Monolayers. Journal of Biological Chemistry, 1997, 272, 3471-3472.	1.6	71
71	Co-translational membrane integration of calcium pump protein without signal sequence cleavage. Nature, 1981, 292, 87-88.	13.7	70
72	<i>Pseudomonas aeruginosa</i> -Mediated Damage Requires Distinct Receptors at the Apical and Basolateral Surfaces of the Polarized Epithelium. Infection and Immunity, 2010, 78, 939-953.	1.0	67

#	Article	IF	Citations
73	Penetration and Co-localization in MDCK Cell Mitochondria of IgA Derived from Patients with Primary Biliary Cirrhosis. Journal of Autoimmunity, 1998, 11, 573-580.	3.0	66
74	Pak1 and PIX regulate contact inhibition during epithelial wound healing. EMBO Journal, 2003, 22, 4155-4165.	3.5	66
75	Apical targeting of the formin Diaphanous in Drosophila tubular epithelia. ELife, 2013, 2, e00666.	2.8	62
76	The Role of Syntaxins in the Specificity of Vesicle Targeting in Polarized Epithelial Cells. Molecular Biology of the Cell, 2005 , 16 , 5784 - 5792 .	0.9	61
77	Simulating Properties of In Vitro Epithelial Cell Morphogenesis. PLoS Computational Biology, 2006, 2, e129.	1.5	58
78	Phosphoinositides Control Epithelial Development. Cell Cycle, 2007, 6, 1957-1961.	1.3	58
79	Intracellular Redirection of Plasma Membrane Trafficking after Loss of Epithelial Cell Polarity. Molecular Biology of the Cell, 2000, 11, 3045-3060.	0.9	55
80	Disruption of Apical-Basal Polarity of Human Embryonic Stem Cells Enhances Hematoendothelial Differentiation. Stem Cells, 2007, 25, 2215-2223.	1.4	54
81	The phospholipid PI(3,4)P2 is an apical identity determinant. Nature Communications, 2018, 9, 5041.	5.8	54
82	p120 catenin is required for normal renal tubulogenesis and glomerulogenesis. Development (Cambridge), 2011, 138, 2099-2109.	1.2	50
83	Transduction of Basolateral-to-Apical Signals across Epithelial Cells: Ligand-stimulated Transcytosis of the Polymeric Immunoglobulin Receptor Requires Two Signals. Molecular Biology of the Cell, 1999, 10, 1409-1427.	0.9	49
84	Morphological and Biochemical Analysis of Rac1 in Threeâ€Dimensional Epithelial Cell Cultures. Methods in Enzymology, 2006, 406, 676-691.	0.4	49
85	Dimerization of the Polymeric Immunoglobulin Receptor Controls Its Transcytotic Trafficking. Molecular Biology of the Cell, 1998, 9, 901-915.	0.9	48
86	Role of Tyrosine Phosphorylation in Ligand-induced Regulation of Transcytosis of the Polymeric Ig Receptor. Molecular Biology of the Cell, 1998, 9, 1787-1802.	0.9	47
87	Cse1l Is a Negative Regulator of CFTR-Dependent Fluid Secretion. Current Biology, 2010, 20, 1840-1845.	1.8	47
88	Host Cell Polarity Proteins Participate in Innate Immunity to Pseudomonas aeruginosa Infection. Cell Host and Microbe, 2014, 15, 636-643.	5.1	47
89	Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line. American Journal of Physiology - Renal Physiology, 2001, 280, F879-F885.	1.3	46
90	Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures. Journal of Cell Biology, 2013, 203, 359-372.	2.3	45

#	Article	IF	Citations
91	Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Developmental Biology, 2012, 361, 68-78.	0.9	43
92	Epithelial Cell Polarity Alters Rho-GTPase Responses toPseudomonas aeruginosa. Molecular Biology of the Cell, 2004, 15, 411-419.	0.9	42
93	Calmodulin Binds to the Basolateral Targeting Signal of the Polymeric Immunoglobulin Receptor. Journal of Biological Chemistry, 1996, 271, 1336-1342.	1.6	39
94	Immunoglobulin Transport and the Polymeric Immunoglobulin Receptor., 2005,, 211-250.		38
95	Phosphoinositide 3-kinase regulates the role of retromer in transcytosis of the polymeric immunoglobulin receptor. Experimental Cell Research, 2007, 313, 707-718.	1.2	38
96	Liver Progenitor Cells Fold Up a Cell Monolayer into a Double-layered Structure during Tubular Morphogenesis. Molecular Biology of the Cell, 2009, 20, 2486-2494.	0.9	38
97	Intercellular Transfer of GPRC5B via Exosomes Drives HGF-Mediated Outward Growth. Current Biology, 2014, 24, 199-204.	1.8	38
98	Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway. American Journal of Physiology - Renal Physiology, 2007, 293, F1633-F1640.	1.3	37
99	Phosphoinositide 3-kinase p $110\hat{l}^\prime$ promotes lumen formation through the enhancement of apico-basal polarity and basal membrane organization. Nature Communications, 2015, 6, 5937.	5.8	37
100	Wortmannin inhibits transcytosis of dimeric IgA by the polymeric immunoglobulin receptor. FEBS Letters, 1995, 376, 74-76.	1.3	35
101	Pseudomonas aeruginosa interacts with epithelial cells rapidly forming aggregates that are internalized by a Lyn-dependent mechanism. Cellular Microbiology, 2011, 13, 1212-1222.	1.1	35
102	Sorting of plasma membrane proteins in epithelial cells. Current Opinion in Cell Biology, 1991, 3, 647-653.	2.6	34
103	Hepatocyte growth factor induces MDCK cell morphogenesis without causing loss of tight junction functional integrity. American Journal of Physiology - Cell Physiology, 2004, 286, C482-C494.	2.1	33
104	Adaptor Protein CD2AP and L-type Lectin LMAN2 Regulate Exosome Cargo Protein Trafficking through the Golgi Complex. Journal of Biological Chemistry, 2016, 291, 25462-25475.	1.6	33
105	Susceptibility of Epithelial Cells to <i>Pseudomonas aeruginosa</i> Invasion and Cytotoxicity Is Upregulated by Hepatocyte Growth Factor. Infection and Immunity, 1998, 66, 3443-3446.	1.0	33
106	MDCK Cystogenesis Driven by Cell Stabilization within Computational Analogues. PLoS Computational Biology, 2011, 7, e1002030.	1.5	32
107	mTOR is out of control in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5247-5248.	3.3	30
108	Identification of a Cytoplasmic Signal for Apical Transcytosis. Traffic, 2009, 10, 1128-1142.	1.3	30

7

#	Article	IF	CITATIONS
109	cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner. Development (Cambridge), 2016, 143, 3582-3590.	1.2	29
110	Developing renal tubules orient cell division via Afadin to position the tubule lumen. Development (Cambridge), 2017, 144, 3511-3520.	1.2	27
111	Vesicle transport, cilium formation, and membrane specialization: The origins of a sensory organelle. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18383-18384.	3.3	26
112	A computational approach to resolve cell level contributions to early glandular epithelial cancer progression. BMC Systems Biology, 2009, 3, 122.	3.0	25
113	Role of Rab Proteins in Epithelial Membrane Traffic. International Review of Cytology, 2003, 232, 59-88.	6.2	24
114	Focal adhesion components are essential for mammalian cell cytokinesis. Cell Cycle, 2008, 7, 2868-2876.	1.3	24
115	Catch the \hat{l} /41B Train to the Basolateral Surface. Cell, 1999, 99, 121-122.	13.5	22
116	Transcriptional Profiling Identifies TNS4 Function in Epithelial Tubulogenesis. Current Biology, 2011, 21, 161-166.	1.8	22
117	P114RhoGEF governs cell motility and lumen formation during tubulogenesis via ROCK-myosin II pathway. Journal of Cell Science, 2015, 128, 4317-27.	1.2	22
118	Cyclic AMP regulates formation of mammary epithelial acini in vitro. Molecular Biology of the Cell, 2012, 23, 2973-2981.	0.9	21
119	[40] Biosynthesis, processing, and function of secretory component. Methods in Enzymology, 1983, 98, 458-466.	0.4	18
120	Analysis of Membrane Traffic in Polarized Epithelial Cells. Current Protocols in Cell Biology, 2001, 12, 15.5.1-15.5.18.	2.3	18
121	Computational investigation of epithelial cell dynamic phenotype in vitro. Theoretical Biology and Medical Modelling, 2009, 6, 8.	2.1	17
122	Protein traffic in polarized epithelial cells: the polymeric immunoglobulin receptor as a model system. Journal of Cell Science, 1993, 1993, 21-26.	1.2	16
123	Fibroblast-derived HGF drives acinar lung cancer cell polarization through integrin-dependent RhoA-ROCK1 inhibition. Cellular Signalling, 2017, 40, 91-98.	1.7	16
124	A Computational Approach to Understand In Vitro Alveolar Morphogenesis. PLoS ONE, 2009, 4, e4819.	1.1	15
125	Nectin proteins are expressed at early stages of nephrogenesis and play a role in renal epithelial cell morphogenesis. American Journal of Physiology - Renal Physiology, 2009, 296, F564-F574.	1.3	15
126	Scrib regulates HGF-mediated epithelial morphogenesis and is stabilized by Sgt1-HSP90. Journal of Cell Science, 2012, 125, 4147-57.	1.2	15

#	Article	IF	CITATIONS
127	TRANSCELLULAR TRANSPORT OF POLYMERIC IMMUNOGLOBULIN BY SECRETORY COMPONENT: A MODEL SYSTEM FOR STUDYING INTRACELLULAR PROTEIN SORTING. Annals of the New York Academy of Sciences, 1983, 409, 441-451.	1.8	14
128	Transepithelial Transport of Immunoglobulins: A Model of Protein Sorting and Transcytosis. American Journal of Respiratory Cell and Molecular Biology, 1989, 1, 257-262.	1.4	14
129	SIGNAL TRANSDUCTION: A New Thread in an Intricate Web. Science, 2001, 294, 1845-1847.	6.0	14
130	Inflationary pressures. Nature, 2007, 449, 549-550.	13.7	13
131	STAT1 Is Required for Redifferentiation during Madin-Darby Canine Kidney Tubulogenesis. Molecular Biology of the Cell, 2010, 21, 3926-3933.	0.9	13
132	Intussusceptive Angiogenesis in Human Metastatic Malignant Melanoma. American Journal of Pathology, 2021, 191, 2023-2038.	1.9	13
133	Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity. Molecular Biology of the Cell, 2017, 28, 252-260.	0.9	12
134	Polymeric Immunoglobulin Receptor. International Review of Cytology, 1993, 137B, 157-168.	6.2	11
135	Ciliary Hedgehog signaling patterns the digestive system to generate mechanical forces driving elongation. Nature Communications, 2021, 12, 7186.	5.8	11
136	A Qualitative Change in the Transcriptome Occurs after the First Cell Cycle and Coincides with Lumen Establishment during MDCKII Cystogenesis. IScience, 2020, 23, 101629.	1.9	10
137	Just mix and patch. Nature, 2003, 422, 267-268.	13.7	9
138	Simple Rules Determine Distinct Patterns of Branching Morphogenesis. Cell Systems, 2019, 9, 221-227.	2.9	9
139	Connecting apical endocytosis to the intracellular traffic infrastructure in polarized hepatocytes. Gastroenterology, 2000, 119, 1791-1794.	0.6	8
140	Formation of Multicellular Epithelial Structures. Novartis Foundation Symposium, 2008, , 193-205.	1.2	8
141	Simulation of lung alveolar epithelial wound healing in vitro. Journal of the Royal Society Interface, 2010, 7, 1157-1170.	1.5	8
142	Formation of multicellular epithelial structures. Novartis Foundation Symposium, 2005, 269, 193-200; discussion 200-5, 223-30.	1.2	8
143	The hole picture. Nature, 2006, 442, 363-364.	13.7	7
144	Reduced Immunoglobulin A Transcytosis Associated with Immunoglobulin A Nephropathy and Nasopharyngeal Carcinoma. Journal of Biological Chemistry, 2011, 286, 44921-44925.	1.6	7

#	Article	IF	CITATIONS
145	Laying the foundation for epithelia: insights into polarized basement membrane deposition. EMBO Reports, 2010, 11, 329-330.	2.0	6
146	Catch the KIF5B Train to the Apical Surface. Developmental Cell, 2007, 13, 457-458.	3.1	5
147	Cell height: Tao rising. Journal of Cell Biology, 2012, 199, 1023-1024.	2.3	4
148	Polarity Is Destiny. Cell, 2009, 139, 660-662.	13.5	3
149	In silico simulation of epithelial cell tubulogenesis. , 2008, 2008, 1036-9.		2
150	Both the Gsî $^{\pm}$ and î 2 î 3 subunits of the heterotrimeric G protein, Gs, control the sorting of the polymeric immunoglobulin receptor into transcytotic vesicles. Biochemical Society Transactions, 1994, 22, 463-468.	1.6	1
151	Cell-Polarity Dynamics Controls the Mechanism of Lumen Formation in Epithelial Morphogenesis. Current Biology, 2008, 18, 1016.	1.8	1
152	An in vitro model of intussusceptive angiogenesis. FASEB Journal, 2006, 20, A31.	0.2	1
153	Scrib regulates HGF-mediated epithelial morphogenesis and is stabilized by Sgt1-HSP90. Development (Cambridge), 2012, 139, e1-e1.	1.2	1
154	Simulation modeling of in vitro epithelial morphogenesis and malignancy. Journal of Critical Care, 2007, 22, 347-348.	1.0	0
155	Cell-Polarity Dynamics Controls the Mechanism of Lumen Formation in Epithelial Morphogenesis. Current Biology, 2008, 18, 630.	1.8	О
156	185: p120 Catenin Regulates Epithelial Tubulogenesis in Proximal Tubules. American Journal of Kidney Diseases, 2010, 55, B78.	2.1	0
157	Csell Is a Negative Regulator of CFTR-Dependent Fluid Secretion. Current Biology, 2010, 20, 2157.	1.8	O
158	Simulating Properties of In Vitro Epithelial Cell Morphogenesis. PLoS Computational Biology, 2005, preprint, e129.	1.5	0
159	cAMP regulates polarization and apoptosis during mammary epithelial acini formation in vitro. FASEB Journal, 2012, 26, 1152.15.	0.2	0
160	Scrib regulates HGF-mediated epithelial morphogenesis and is stabilized by Sgt1-HSP90. Development (Cambridge), 2012, 139, e1808-e1808.	1.2	0
161	Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures. Journal of General Physiology, 2013, 142, 1425OIA43.	0.9	0

Rapid functional assay to elucidate the oncogenic activity of unknown mutations (variants of) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
163	Identification of the functional significance of mutations using the novel Precision Cancer Analysis System Journal of Clinical Oncology, 2015, 33, e22123-e22123.	0.8	0
164	Abstract LB-B24: Identification of the functional significance of mutations using the novel Precision Cancer Analysis System. , $2015, \ldots$		0
165	Abstract 1379: Identification of the functional significance of mutations using the novel precision cancer analysis system. , $2016, , .$		O
166	A Qualitative Change in the Transcriptome During MDCKII 3D Epithelial Morphogenesis is Linked to the First Cell Cycle and Intracellular Trafficking. SSRN Electronic Journal, 0, , .	0.4	0