List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Threonine-Based Stimuli-Responsive Nanoparticles with Aggregation-Induced Emission-Type Fixed Cores for Detection of Amines in Aqueous Solutions. Polymers, 2022, 14, 1362.	2.0	2
2	<scp>Aggregationâ€induced</scp> multicolor luminescent nanoparticles with adaptive and fixed cores derived from brominated <scp>tetraphenyletheneâ€containing</scp> block copolymer. Journal of Polymer Science, 2021, 59, 532-546.	2.0	7
3	Mixed Polyplex Micelles with Thermoresponsive and Lysine-Based Zwitterionic Shells Derived from Two Poly(vinyl amine)-Based Block Copolymers. Langmuir, 2021, 37, 3001-3014.	1.6	12
4	Highly transparent and photopatternable spirobifluorene-based polythioethers with high refractive indices via thiol-ene click chemistry. Polymer, 2021, 224, 123725.	1.8	10
5	Polymerizationâ€induced selfâ€assembly of aminoâ€acidâ€based nanoâ€objects by reversible addition–fragmentation chainâ€transfer dispersion polymerization. Journal of Polymer Science, 2021, 59, 1664-1677.	2.0	1
6	Photocurable selenophene/maleimide-based high-refractive-index copolymers obtained via radical copolymerization. Reactive and Functional Polymers, 2021, 165, 104960.	2.0	5
7	Tetramethylurea dimer/lithium salt-based deep eutectics as a novel class of eutectic electrolytes. Materials Chemistry Frontiers, 2021, 5, 8078-8085.	3.2	5
8	Preparation of highly transparent poly(meth)acrylates with enhanced refractive indices by radical (co)polymerization of seleno(meth)acrylates. Polymer, 2021, 237, 124346.	1.8	3
9	Thienoisoindigo-based donor–acceptor random copolymers: synthesis, characterization, and thin film nanostructure study. Polymer Bulletin, 2020, 77, 4011-4022.	1.7	2
10	Synthesis of ion-conductive polymers by radical polymerization of deep eutectic monomers bearing quaternary ammonium groups with urea. Polymer, 2020, 204, 122803.	1.8	15
11	<i>S</i> -Vinyl Sulfide-Derived Pendant-Type Sulfone/Phenoxazine-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence: Synthesis and Photophysical Property Characterization. ACS Applied Polymer Materials, 2020, 2, 3310-3318.	2.0	11
12	RAFT polymerization of tertiary sulfonium zwitterionic monomer in aqueous media for synthesis of protein stabilizing double hydrophilic block copolymers. Journal of Polymer Science, 2020, 58, 1771-1786.	2.0	1
13	Multi-stimuli-responsive chiral-achiral ampholytic block copolymers composed of poly(N-acryloyl) Tj ETQq1 1 (0.784314 rgBT 2.0	O_{13} verlock 1
14	Highly Transparent Benzothiazole-Based Block and Random Copolymers with High Refractive Indices by RAFT Polymerization. ACS Applied Polymer Materials, 2020, 2, 3205-3214.	2.0	14
15	Self-healing hybrids fabricated by metal complexation with imidazole-containing silsesquioxane nanoparticles. Materials Chemistry Frontiers, 2020, 4, 2655-2664.	3.2	7
16	Enhanced Heat Resistance and Adhesive Strength of Styrene–Acrylic Triblock Copolymer Elastomers by Incorporating Acrylic Acid. ACS Omega, 2020, 5, 3678-3688.	1.6	10
17	Luminescent core–shell nanoparticles with crosslinked aggregationâ€induced emission core structures: Emission both in solution and solid states. Journal of Polymer Science, 2020, 58, 852-859.	2.0	4
18	Lithium salt/amide-based deep eutectic electrolytes for lithium-ion batteries: electrochemical, thermal and computational study. Physical Chemistry Chemical Physics, 2020, 22, 8853-8863.	1.3	43

#	Article	IF	CITATIONS
19	Synthesis and Hierarchical Selfâ€Assembly of Diphenylalanineâ€Based Homopolymer and Copolymers By RAFT Polymerization. Journal of Polymer Science Part A, 2019, 57, .	2.5	9
20	Protein-Stabilizing Effect of Amphiphilic Block Copolymers with a Tertiary Sulfonium-Containing Zwitterionic Segment. ACS Omega, 2019, 4, 18234-18247.	1.6	8
21	Donor–Acceptor Core–Shell Nanoparticles and Their Application in Nonâ€Volatile Transistor Memory Devices. Macromolecular Rapid Communications, 2019, 40, 1900115.	2.0	11
22	Synthesis, Assembled Structures, and DNA Complexation of Thermoresponsive Lysine-Based Zwitterionic and Cationic Block Copolymers. Langmuir, 2019, 35, 4646-4659.	1.6	13
23	Synthesis of Zwitterionic Polymers Containing a Tertiary Sulfonium Group for Protein Stabilization. Biomacromolecules, 2019, 20, 904-915.	2.6	18
24	Self-Templated Generation of Triggerable and Restorable Nonequilibrium Micelles. ACS Macro Letters, 2018, 7, 341-346.	2.3	14
25	Synthesis of poly(chloroprene)-based block copolymers by RAFT-mediated emulsion polymerization. Polymer, 2018, 140, 198-207.	1.8	9
26	Design and synthesis of multi-functional silsesquioxane nanoparticles having two distinct optoelectronic functionalities. Colloid and Polymer Science, 2018, 296, 1017-1028.	1.0	6
27	<scp>RAFT</scp> â€mediated emulsion polymerization of chloroprene and impact of chainâ€end structure on chloroprene rubbers. Journal of Applied Polymer Science, 2018, 135, 46008.	1.3	5
28	Direct arylation synthesis of thienoisoindigoâ€based lowâ€bandâ€gap polymer from asymmetric donor–acceptor monomer. Journal of Polymer Science Part A, 2018, 56, 430-436.	2.5	12
29	Alcohol-Soluble Cross-Linked Poly(<i>n</i> BA) _{<i>n</i>} - <i>b</i> Poly(NVTri) _{<i>m</i>} Block Copolymer and Its Applications in Organic Photovoltaic Cells for Improved Stability. ACS Applied Materials & Interfaces, 2018, 10, 44741-44750.	4.0	10
30	Synthesis and Optoelectronic Properties of Block and Random Copolymers Containing Pendant Carbazole and (Di)phenylanthracene. Polymers, 2018, 10, 721.	2.0	7
31	Synthesis and nanoimprinting of high refractive index and highly transparent polythioethers based on thiolâ€ene click chemistry. Journal of Polymer Science Part A, 2018, 56, 2175-2182.	2.5	19
32	Benzothiadiazole-based donor–acceptor nanoparticles with solvatochromic and thermoresponsive properties. Reactive and Functional Polymers, 2018, 131, 350-360.	2.0	8
33	Design of ion-conductive core-shell nanoparticles via site-selective quaternization of triazole–triazolium salt block copolymers. European Polymer Journal, 2018, 105, 339-347.	2.6	11
34	Synthesis of multifunctional silsesquioxane nanoparticles with hydroxyl and polymerizable groups for UV-curable hybrid coating. Reactive and Functional Polymers, 2017, 115, 43-52.	2.0	13
35	Phosphineâ€free direct arylation synthesis and selfâ€assembled nanostructure analysis of poly(3â€hexylselenophene). Journal of Polymer Science Part A, 2017, 55, 2749-2755.	2.5	4
36	Dyeâ€containing nonaqueous dispersions derived from methanolâ€soluble polymers stabilized by block–random copolymer surfactant. Journal of Applied Polymer Science, 2017, 134, .	1.3	0

#	Article	IF	CITATIONS
37	Synthesis of sulfur-rich nanoparticles using self-assembly of amphiphilic block copolymer and a site-selective cross-linking reaction. Polymer, 2017, 126, 188-195.	1.8	5
38	Self-condensation-type direct arylation synthesis of naphthalene bisimide-bithiophene alternating copolymers. Microsystem Technologies, 2017, 23, 3817-3823.	1.2	3
39	Thermoresponsive Segments Retard the Formation of Equilibrium Micellar Interpolyelectrolyte Complexes by Detouring to Various Intermediate Structures. Journal of Physical Chemistry B, 2017, 121, 6739-6748.	1.2	18
40	Dual-functional fluorinated-thiolated silsesquioxane nanoparticles for UV nanoimprinting via thiol-ene chemistry. Polymer, 2017, 122, 60-70.	1.8	6
41	Ionic Conductivity and Assembled Structures of Imidazolium Salt-Based Block Copolymers with Thermoresponsive Segments. Polymers, 2017, 9, 616.	2.0	8
42	Synthesis and Application of Core-Shell Nanoparticles with Opto-Electrical Core Structures. Journal of the Japan Society of Colour Material, 2017, 90, 138-143.	0.0	0
43	Non-volatile transistor memory devices using charge storage cross-linked core–shell nanoparticles. Chemical Communications, 2016, 52, 7269-7272.	2.2	18
44	Threonine-based chiral homopolymers with multi-stimuli-responsive property by RAFT polymerization. Polymer, 2016, 97, 20-30.	1.8	19
45	Synthesis of 1,2,4-triazolium salt-based polymers and block copolymers by RAFT polymerization: Ion conductivity and assembled structures. Polymer, 2016, 96, 81-93.	1.8	36
46	Influence of molecular weight on kinetics release of metronidazole from proline-based polymers prepared by RAFT polymerization. RSC Advances, 2016, 6, 72761-72767.	1.7	5
47	Perylene bisimideâ€based semiconducting polymers: Synthesis via palladiumâ€catalyzed direct arylation, characterization, optoelectrical properties, and nanomorphology. Journal of Polymer Science Part A, 2016, 54, 3151-3158.	2.5	12
48	Synthesis and metal complexation of dual-functionalized silsesquioxane nanoparticles by sequential thiol–epoxy click and esterification reactions. Reactive and Functional Polymers, 2016, 107, 11-19.	2.0	10
49	Controlled Synthesis of Thiazole-Based Polymers and Block Copolymers by RAFT Polymerization of Azolyl S-Vinyl Sulfides and Metal Complexation. Macromolecules, 2016, 49, 1616-1629.	2.2	17
50	Design of stimuli-responsive nanoparticles with optoelectronic cores by post-assembly cross-linking and self-assembly of functionalized block copolymers. Polymer, 2016, 86, 56-68.	1.8	10
51	Synthesis and characterization of all-conjugated hard-soft-hard ABA triblock copolythiophenes. Microsystem Technologies, 2016, 22, 3-10.	1.2	14
52	Controlled-release of metronidazole from proline-based polymers prepared by RAFT polymerization: Molecular weight-dependence. Journal of Controlled Release, 2015, 213, e81-e82.	4.8	1
53	Creation of Amino Acid-Based Polymeric Nano-Assemblies by RAFT Polymerization. Kobunshi Ronbunshu, 2015, 72, 275-284.	0.2	1
54	Controlled Polymerization of Electron-deficient Naphthalene-diimide Containing Monomer by Negishi-type Catalyst-transfer Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 279-283.	0.1	7

#	Article	IF	CITATIONS
55	RAFT Polymerization of Phenyl Vinyl Sulfide Using Trithiocarbonate Mediating Agents and Synthesis of Block Copolymers. Macromolecular Symposia, 2015, 349, 34-43.	0.4	9
56	All-Polymer Solar Cells Based on Fully Conjugated Donor-Acceptor Block Copolymers with Poly(naphthalene bisimide) Acceptor Blocks: Device Performance and Thin Film Morphology. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	2
57	Benzodithiophene-based low band-gap polymers with deep HOMO levels: synthesis, characterization, and photovoltaic performance. Polymer Journal, 2015, 47, 617-623.	1.3	6
58	Rylene bisimide-based nanoparticles with cross-linked core andÂthermoresponsive shell using poly(vinyl amine)-based blockÂcopolymers. Polymer, 2015, 68, 17-24.	1.8	14
59	Synthesis of sulfur-containing alternating copolymers by RAFT copolymerization of phenyl vinyl sulfides. Reactive and Functional Polymers, 2015, 93, 170-177.	2.0	22
60	Synthesis of 1,3,4-thiadiazole-based donor–acceptor alternating copolymers for polymer solar cells with high open-circuit voltage. Polymer Journal, 2015, 47, 513-521.	1.3	12
61	Nonaqueous Dispersion Formed by an Emulsion Solvent Evaporation Method Using Block–Random Copolymer Surfactant Synthesized by RAFT Polymerization. Langmuir, 2015, 31, 11399-11408.	1.6	12
62	â€Face-On―Oriented ^ ^pi;-Conjugated Polymers Containing 1,3,4-Thiadiazole Moiety Investigated with Synchrotron GIXS Measurements: Relationship between Morphology and PSC Performance. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 351-356.	0.1	2
63	Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications. Materials, 2014, 7, 3274-3290.	1.3	37
64	Thermoresponsive core–shell nanoparticles with cross-linked π-conjugate core based on amphiphilic block copolymers by RAFT polymerization and palladium-catalyzed coupling reactions. Polymer, 2014, 55, 6025-6035.	1.8	31
65	Precision synthesis of regioregular poly(3-hexylthiophene) with low dispersity using a zincate complex catalyzed by nickel with the ligand of 1,2-bis(dicyclohexylphosphino)ethane. Journal of Polymer Science Part A, 2014, 52, 2287-2296.	2.5	23
66	Synthesis of amino acidâ€based polymers having metronidazole moiety and study of their controlled release <i>in vitro</i> . Journal of Applied Polymer Science, 2013, 127, 4918-4926.	1.3	16
67	Tryptophan-Containing Block Copolymers Prepared by RAFT Polymerization: Synthesis, Self-Assembly, and Chiroptical and Sensing Properties. Macromolecules, 2013, 46, 6451-6465.	2.2	28
68	RAFT Polymerization of <i>S</i> -Vinyl Sulfide Derivatives and Synthesis of Block Copolymers Having Two Distinct Optoelectronic Functionalities. Macromolecules, 2013, 46, 5998-6012.	2.2	40
69	Sulfur-containing silsesquioxane hybrids with high refractive index and high Abbe number. Colloid and Polymer Science, 2013, 291, 1085-1094.	1.0	7
70	Water-soluble poly(N-vinyl-1,2,4-triazole) star and amphiphilic star block copolymers by RAFT polymerization. Polymer, 2013, 54, 2001-2010.	1.8	12
71	Film-forming amphiphilic silsesquioxane hybrids prepared by hydrolytic co-condensation of hydroxyl-functionalized and fluorinated triethoxysilanes. Polymer, 2012, 53, 3849-3860.	1.8	17
72	Cross-Linked Core–Shell Nanoparticles Based on Amphiphilic Block Copolymers by RAFT Polymerization and Palladium-Catalyzed Suzuki Coupling Reaction. Macromolecules, 2012, 45, 3197-3204.	2.2	38

HIDEHARU MORI

#	Article	IF	CITATIONS
73	All-Polymer Solar Cells Based on Fully Conjugated Block Copolymers Composed of Poly(3-hexylthiophene) and Poly(naphthalene bisimide) Segments. Macromolecules, 2012, 45, 9618-9625.	2.2	92
74	Synthesis and characterization of cationic silsesquioxane hybrids by hydrolytic condensation of triethoxysilane derived from 2-(dimethylamino)ethyl acrylate. Colloid and Polymer Science, 2012, 290, 1879-1891.	1.0	12
75	Temperature-responsive self-assembly of star block copolymers with poly(ionic liquid) segments. Polymer Journal, 2012, 44, 550-560.	1.3	50
76	Design and Synthesis of Functional Silsesquioxane-Based Hybrids by Hydrolytic Condensation of Bulky Triethoxysilanes. International Journal of Polymer Science, 2012, 2012, 1-17.	1.2	12
77	Aminoâ€Acidâ€Based Block Copolymers by RAFT Polymerization. Macromolecular Rapid Communications, 2012, 33, 1090-1107.	2.0	95
78	Synthesis of Triazoleâ€Based Amphiphilic Block Copolymers Containing Carbazole Moiety By RAFT Polymerization. Macromolecular Chemistry and Physics, 2012, 213, 1803-1814.	1.1	21
79	Synthesis, Assembled Structures, and Optoelectronic Properties of Amphiphilic Block Copolymers Containing Anthracene Units in the Main Chain. Macromolecular Chemistry and Physics, 2011, 212, 2349-2359.	1.1	6
80	Complexation of Aminoâ€Acidâ€Based Block Copolymers With Dual Thermoresponsive Properties and Waterâ€Soluble Silsesquioxane Nanoparticles. Macromolecular Chemistry and Physics, 2011, 212, 2558-2572.	1.1	6
81	Synthesis of Amphiphilic and Doubleâ€Hydrophilic Block Copolymers Containing Poly(vinyl amine) Segments by RAFT Polymerization of <i>N</i> â€Vinylphthalimide. Macromolecular Chemistry and Physics, 2010, 211, 45-56.	1.1	25
82	Controlled Synthesis of Alternating Copolymers by RAFT Copolymerization of <i>N</i> â€Vinylphthalimide with <i>N</i> â€Isopropylacrylamide. Macromolecular Chemistry and Physics, 2010, 211, 1137-1147.	1.1	11
83	RAFT Polymerization of Vinyl Sulfonate Esters for the Controlled Synthesis of Poly(lithium vinyl) Tj ETQq1 1 0.78	4314 rgB ⁻ 2.2	Г /Qverlock 1 45
84	Proline-Based Block Copolymers Displaying Upper and Lower Critical Solution Temperatures. Macromolecules, 2010, 43, 1289-1298.	2.2	77
85	Synthesis and Optoelectronic Properties of Alternating Copolymers Containing Anthracene Unit in The Main Chain by Radical Ring-Opening Polymerization. Macromolecules, 2010, 43, 7011-7020.	2.2	41
86	Doubleâ€Hydrophilic and Amphiphilic Block Copolymers Synthesized by RAFT Polymerization of Monomers Carrying Chiral Amino Acids. Macromolecular Chemistry and Physics, 2009, 210, 217-229.	1.1	19
87	RAFT Polymerization of Vinylthiophene Derivatives and Synthesis of Block Copolymers Having Cross-Linkable Segments. Macromolecules, 2009, 42, 7342-7352.	2.2	28
88	Dual-Stimuli-Responsive Block Copolymers Derived from Proline Derivatives. Macromolecules, 2009, 42, 4985-4992.	2.2	54
89	Assembled Structures and Chiroptical Properties of Amphiphilic Block Copolymers Synthesized by RAFT Polymerization of <i>N</i> â€Acryloylâ€ <scp>L</scp> â€alanine. Macromolecular Chemistry and Physics, 2008, 209, 2100-2112.	1.1	29
90	Synthesis of novel moisture-curable polyurethanes end-capped with alkoxysilane and use as solvent-free elastic adhesives. Journal of Applied Polymer Science, 2008, 108, 236-244.	1.3	18

HIDEHARU MORI

#	Article	IF	CITATIONS
91	Evaluation of the curing process of polyurethane endâ€capped with trialkoxysilanes by a boron trifluoride/amine complex and organotin compound. Journal of Applied Polymer Science, 2008, 109, 608-616.	1.3	8
92	Enhanced degradation of cellulose acetate films in the copresence of triphenylsulfonium salt and benzophenone. Journal of Applied Polymer Science, 2008, 109, 3157-3164.	1.3	3
93	RAFT Polymerization of Acrylamides Containing Proline and Hydroxyproline Moiety: Controlled Synthesis of Water-Soluble and Thermoresponsive Polymers. Macromolecules, 2008, 41, 5604-5615.	2.2	87
94	Ring-Opening Copolymerization of 10-Methylene-9,10- Dihydroanthryl-9-Spirophenylcyclopropane via Free Radical and RAFT Processes. Macromolecules, 2008, 41, 632-639.	2.2	17
95	Synthesis of Well-Defined Alternating Copolymers by RAFT Copolymerization of <i>N</i> -Vinylnaphthalimide. Macromolecules, 2008, 41, 8397-8404.	2.2	22
96	Synthesis of Star Polymers Based on Xanthate-Mediated Controlled Radical Polymerization of N-Vinylcarbazole. Macromolecular Symposia, 2007, 249-250, 406-411.	0.4	31
97	Xanthate-Mediated Controlled Radical Polymerization of <i>N</i> -Vinylindole Derivatives. Macromolecules, 2007, 40, 6119-6130.	2.2	57
98	Synthesis and Characterization of Water-Soluble Silsesquioxane-Based Nanoparticles by Hydrolytic Condensation of Triethoxysilane Derived from 2-Hydroxyethyl Acrylate. Langmuir, 2007, 23, 9014-9023.	1.6	42
99	Photodegradation of cellulose acetate film in the presence of benzophenone as a photosensitizer. Journal of Applied Polymer Science, 2007, 105, 3235-3239.	1.3	19
100	Curing of silylated polyurethane with BF ₃ â€monoethylamine complex as moistureâ€curable adhesives and their properties. Journal of Applied Polymer Science, 2007, 106, 3165-3170.	1.3	9
101	Structures and Chiroptical Properties of Thermoresponsive Block Copolymers Containing <scp>L</scp> â€Proline Moieties. Macromolecular Chemistry and Physics, 2007, 208, 1908-1918.	1.1	37
102	Controlled RAFT Polymerization of <i>N</i> â€Vinylphthalimide and its Hydrazinolysis to Poly(vinyl) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
103	Ring-opening grafting polymerization of cyclic monomers onto human hair. Journal of Polymer Science Part A, 2007, 45, 736-744.	2.5	3
104	Synthesis of novel moisture-curable polyurethanes end-capped with trialkoxysilane and their application to one-component adhesives. Journal of Polymer Science Part A, 2007, 45, 2689-2704.	2.5	51
105	Enhanced degradation of cellulose acetate film containing diphenyliodonium salt–benzophenone. Cellulose, 2007, 14, 529-537.	2.4	7
106	Controlled synthesis of thermoresponsive polymer via RAFT polymerization of an acrylamide containing l-proline moiety. Reactive and Functional Polymers, 2007, 67, 916-927.	2.0	47
107	RAFT Polymerization of Acrylamide Derivatives Containingl-Phenylalanine Moiety. Macromolecules, 2006, 39, 4351-4360.	2.2	87
	Ding Opening DAET Delymerization Record on Aromatization as Driving Forces & Synthesis of Wall Defined		

108Ring-Opening RAFT Polymerization Based on Aromatization as Driving Force:Â Synthesis of Well-Defined
Polymers Containing Anthracene Units in the Main Chain. Macromolecules, 2006, 39, 5976-5978.2.228

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Surface-Grafted Hyperbranched Glycomethacrylates. Macromolecules, 2006, 39, 2743-2750.	2.2	78
110	Anionic grafting polymerization of propylene sulfide onto human hair in water. Journal of Polymer Science Part A, 2006, 44, 3778-3786.	2.5	6
111	Synthesis and characterization of block copolymers by metal- and solvent-free ring-opening polymerization of cyclic carbonates initiated from PEG-based surfactants. Journal of Polymer Science Part A, 2006, 44, 1985-1996.	2.5	19
112	Controlled Synthesis of Amino Acid-Based Polymers by Reversible Addition Fragmentation Chain Transfer Polymerization. ACS Symposium Series, 2006, , 533-546.	0.5	4
113	Synthesis and Characterization of Methacrylate-Type Glycopolymers with Branched Architectures. ACS Symposium Series, 2006, , 214-233.	0.5	0
114	Xanthate-Mediated Controlled Radical Polymerization ofN-Vinylcarbazole. Macromolecular Chemistry and Physics, 2006, 207, 1005-1017.	1.1	84
115	Controlled synthesis of thermoresponsive polymers derived from l-proline via RAFT polymerization. Chemical Communications, 2005, , 4872.	2.2	131
116	Molecular Sugar Sticks:  Cylindrical Glycopolymer Brushes. Macromolecules, 2005, 38, 7926-7934.	2.2	81
117	Controlled Radical Polymerization of an Acrylamide Containingl-Phenylalanine Moiety via RAFT. Macromolecules, 2005, 38, 9055-9065.	2.2	91
118	Controlled Synthesis of Poly(N-ethyl-3-vinylcarbazole) and Block Copolymers via RAFT Polymerization. Macromolecules, 2005, 38, 8192-8201.	2.2	88
119	Synthesis and Characterization of Glycomethacrylate Hybrid Stars from Silsesquioxane Nanoparticles. Macromolecules, 2005, 38, 10631-10642.	2.2	74
120	New polymeric architectures with (meth)acrylic acid segments. Progress in Polymer Science, 2003, 28, 1403-1439.	11.8	258
121	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 511-521.	1.1	16
122	Polymerization of α-methyleneindane: A cyclic analog of α-methylstyrene. Journal of Polymer Science Part A, 1991, 29, 1779-1787.	2.5	19
123	Radical polymerization of N-phenyl-α-methylene-β-lactam. Journal of Polymer Science Part A, 1990, 28, 2597-2607.	2.5	11