Akylbek S Sydykov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282466/publications.pdf

Version: 2024-02-01

AKVIBER S SVOVKOV

#	Article	IF	CITATIONS
1	Reversal of experimental pulmonary hypertension by PDGF inhibition. Journal of Clinical Investigation, 2005, 115, 2811-2821.	3.9	917
2	Sildenafil Inhibits Hypoxia-Induced Pulmonary Hypertension. Circulation, 2001, 104, 424-428.	1.6	458
3	Inducible NOS Inhibition Reverses Tobacco-Smoke-Induced Emphysema and Pulmonary Hypertension in Mice. Cell, 2011, 147, 293-305.	13.5	293
4	Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice. Nature Communications, 2012, 3, 649.	5.8	162
5	Characterization of High-Altitude Pulmonary Hypertension in the Kyrgyz. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 1396-1402.	2.5	115
6	Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing. Circulation Research, 2017, 121, 424-438.	2.0	90
7	Mitochondrial Hyperpolarization in Pulmonary Vascular Remodeling. Mitochondrial Uncoupling Protein Deficiency as Disease Model. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 358-367.	1.4	66
8	Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. European Respiratory Journal, 2018, 51, 1701024.	3.1	64
9	Anti–Human Neutrophil Antigen-3a Induced Transfusion-Related Acute Lung Injury in Mice by Direct Disturbance of Lung Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2538-2548.	1.1	53
10	Therapeutic efficacy of azaindole-1 in experimental pulmonary hypertension. European Respiratory Journal, 2010, 36, 808-818.	3.1	48
11	Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. International Journal of Environmental Research and Public Health, 2021, 18, 1692.	1.2	43
12	Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers. Frontiers in Physiology, 2018, 9, 609.	1.3	42
13	The Role of Transient Receptor Potential Channel 6 Channels in the Pulmonary Vasculature. Frontiers in Immunology, 2017, 8, 707.	2.2	39
14	Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Science Advances, 2020, 6, eaba0694.	4.7	39
15	Pressure overload leads to an increased accumulation and activity of mast cells in the right ventricle. Physiological Reports, 2017, 5, e13146.	0.7	36
16	Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling. International Journal of Cardiology, 2013, 167, 2630-2637.	0.8	35
17	Pressure Overload Creates Right Ventricular Diastolic Dysfunction in a Mouse Model: Assessment by Echocardiography. Journal of the American Society of Echocardiography, 2015, 28, 828-843.	1.2	33
18	Right Ventricular Remodeling and Dysfunction in Obstructive Sleep Apnea: A Systematic Review of the Literature and Meta-Analysis. Canadian Respiratory Journal, 2017, 2017, 1-13.	0.8	33

AKYLBEK S SYDYKOV

#	Article	IF	CITATIONS
19	Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy. Respiratory Research, 2005, 6, 86.	1.4	32
20	Lung Ischaemia–Reperfusion Injury: The Role of Reactive Oxygen Species. Advances in Experimental Medicine and Biology, 2017, 967, 195-225.	0.8	29
21	Soluble guanylate cyclase stimulator riociguat and phosphodiesterase 5 inhibitor sildenafil ameliorate pulmonary hypertension due to left heart disease in mice. International Journal of Cardiology, 2016, 216, 85-91.	0.8	28
22	Hemoglobin Changes After Long-Term Intermittent Work at High Altitude. Frontiers in Physiology, 2018, 9, 1552.	1.3	27
23	Effects of Intermittent Exposure to High Altitude on Pulmonary Hemodynamics: A Prospective Study. High Altitude Medicine and Biology, 2003, 4, 455-463.	0.5	25
24	Impact of S-Adenosylmethionine Decarboxylase 1 on Pulmonary Vascular Remodeling. Circulation, 2014, 129, 1510-1523.	1.6	23
25	SPARC, a Novel Regulator of Vascular Cell Function in Pulmonary Hypertension. Circulation, 2022, 145, 916-933.	1.6	21
26	Novel soluble guanylyl cyclase stimulator BAY 41-2272 attenuates ischemia-reperfusion-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L462-L469.	1.3	20
27	The Peroxisome Proliferator–Activated Receptor β/Ĩ´Agonist GW0742 has Direct Protective Effects on Right Heart Hypertrophy. Pulmonary Circulation, 2013, 3, 926-935.	0.8	20
28	Cardiomyocytes-specific deletion of monoamine oxidase B reduces irreversible myocardial ischemia/reperfusion injury. Free Radical Biology and Medicine, 2021, 165, 14-23.	1.3	19
29	Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension. Respiratory Research, 2011, 12, 87.	1.4	17
30	FHL-1 is not involved in pressure overload-induced maladaptive right ventricular remodeling and dysfunction. Basic Research in Cardiology, 2020, 115, 17.	2.5	17
31	Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing. Cardiovascular Research, 2019, 115, 1217-1227.	1.8	16
32	Depletion of Bone Marrow-Derived Fibrocytes Attenuates TAA-Induced Liver Fibrosis in Mice. Cells, 2019, 8, 1210.	1.8	12
33	Enhanced circulating levels of CD3 cellsâ€derived extracellular vesicles in different forms of pulmonary hypertension. Pulmonary Circulation, 2019, 9, 1-4.	0.8	11
34	High altitude pulmonary hypertension with severe right ventricular dysfunction. International Journal of Cardiology, 2013, 168, e89-e90.	0.8	9
35	Altered proteasome function in right ventricular hypertrophy. Cardiovascular Research, 2019, 116, 406-415.	1.8	9
36	Circulating Apoptotic Signals During Acute and Chronic Exposure to High Altitude in Kyrgyz Population. Frontiers in Physiology, 2019, 10, 54.	1.3	9

AKYLBEK S SYDYKOV

#	Article	IF	CITATIONS
37	Effects of macitentan and tadalafil monotherapy or their combination on the right ventricle and plasma metabolites in pulmonary hypertensive rats. Pulmonary Circulation, 2020, 10, 1-16.	0.8	9
38	PINK1-mediated Mitophagy Contributes to Pulmonary Vascular Remodeling in Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 226-228.	1.4	9
39	Chronic intratracheal application of the soluble guanylyl cyclase stimulator BAY 41-8543 ameliorates experimental pulmonary hypertension. Oncotarget, 2017, 8, 29613-29624.	0.8	9
40	Genetic deletion of p66shc and/or cyclophilin D results in decreased pulmonary vascular tone. Cardiovascular Research, 2022, 118, 305-315.	1.8	8
41	A Case of Subacute Infantile Mountain Sickness in a Kyrgyz Child. High Altitude Medicine and Biology, 2018, 19, 208-210.	0.5	5
42	Genetic Deficiency and Pharmacological Stabilization of Mast Cells Ameliorate Pressure Overload-Induced Maladaptive Right Ventricular Remodeling in Mice. International Journal of Molecular Sciences, 2020, 21, 9099.	1.8	5
43	Influence of gender in monocrotaline and chronic hypoxia induced pulmonary hypertension in obese rats and mice. Respiratory Research, 2020, 21, 136.	1.4	5
44	Yarsagumba is a Promising Therapeutic Option for Treatment of Pulmonary Hypertension due to the Potent Anti-Proliferative and Vasorelaxant Properties. Medicina (Lithuania), 2020, 56, 131.	0.8	5
45	Targeting peptidyl-prolyl isomerase 1 in experimental pulmonary arterial hypertension. European Respiratory Journal, 2022, 60, 2101698.	3.1	5
46	Lack of Contribution of p66shc to Pressure Overload-Induced Right Heart Hypertrophy. International Journal of Molecular Sciences, 2020, 21, 9339.	1.8	4
47	An Exaggerated Rise in Pulmonary Artery Pressure in a High-Altitude Dweller during the Cold Season. International Journal of Environmental Research and Public Health, 2021, 18, 3984.	1.2	4
48	High Altitude Pulmonary Edema in a Mining Worker With an Abnormal Rise in Pulmonary Artery Pressure in Response to Acute Hypoxia Without Prior History of High Altitude Pulmonary Edema. Wilderness and Environmental Medicine, 2017, 28, 234-238.	0.4	3
49	Pulmonary Vascular Pressure Response to Acute Cold Exposure in Kyrgyz Highlanders. High Altitude Medicine and Biology, 2019, 20, 375-382.	0.5	3
50	Implication of in vivo circulating fibrocytes ablation in experimental pulmonary hypertension murine model. British Journal of Pharmacology, 2020, 177, 2974-2990.	2.7	3
51	Pulmonary Hypertension due to Lung Diseases and/or Hypoxia: What Do We Actually Know?. Canadian Respiratory Journal, 2017, 2017, 1-2.	0.8	2
52	A Case of Chronic Thromboembolic Pulmonary Hypertension in a High-Altitude Dweller. High Altitude Medicine and Biology, 2019, 20, 303-306.	0.5	2
53	Role of the Purinergic P2Y2 Receptor in Pulmonary Hypertension. International Journal of Environmental Research and Public Health, 2021, 18, 11009.	1.2	2
54	Inhalative Application Of Soluble Guanylyl Cyclase Stimulator BAY 41-8543 For Treatement Of		1

Pulmonary Arterial Hypertension., 2010,,.

AKYLBEK S SYDYKOV

#	Article	IF	CITATIONS
55	Right Ventricular Response to Acute Hypoxia Exposure: A Systematic Review. Frontiers in Physiology, 2021, 12, 786954.	1.3	1
56	sGC activators and stimulators attenuate ischemia/reperfusion injury of the lung. BMC Pharmacology, 2009, 9, .	0.4	0
57	Effects Of The Multikinase Inhibitor Sunitinib On Right Ventricular Remodeling In An Experimental Model Of Right Heart Hypertrophy. , 2010, , .		Ο
58	Reversal Of Experimental Pulmonary Hypertension By The Multi-kinase Inhibitor Sunitinib. , 2010, , .		0
59	Inhibition Of Ca2+/calmodulin-Dependent Phosphodiesterase1A Attenuates Right Ventricular Remodeling And Dysfunction In Two Rat Models. , 2011, , .		Ο
60	Contribution Of Progenitor Cells In Experimental Right Heart Hypertrophy Induced By Pulmonary Artery Ligation. , 2011, , .		0
61	Effects of Multikinase inhibitors on pressure overload-induced right ventricular remodelling. Journal of Inflammation, 2013, 10, P37.	1.5	0
62	The role of mitochondrial reactive oxygen species in the response of the pulmonary vasculature to hypoxia and right heart remodeling. Free Radical Biology and Medicine, 2017, 108, S74.	1.3	0
63	FHL-1 Is Dispensable for Pressure Overload-Induced Maladaptive Right Ventricular Remodeling and Dysfunction. , 2019, , .		Ο
64	An HSV-TK / valganciclovir mouse model enables the study of fibrocytes in liver fibrosis. Journal of Hepatology, 2020, 73, S513-S514.	1.8	0
65	Classical transient receptor potential channel 6 (TRPC6) is essential for ischemiaâ€reperfusion injury of the lung. FASEB Journal, 2010, 24, 591.2.	0.2	0
66	Obesity aggravates monocrotalineâ \in "induced pulmonary hypertension in female Zucker rats. , 2015, , .		0
67	Hypoxic pulmonary vasoconstriction. Russian Heart Journal, 2017, 17, 274-285.	0.1	Ο
68	Regulation of the pulmonary vascular tone by p66shc and cyclophilin D. , 2017, , .		0
69	Targeting of mitochondrial superoxide in chronic hypoxia-induced pulmonary hypertension. , 2019, , .		0
70	Pharmacological inhibition of carbonic anhydrases 9 and 12 attenuates monocrotaline-induced pulmonary hypertension in rats. , 2019, , .		0
71	The relationship of systolic pulmonary arterial pressure with pulmonary function test and the fractional exhaled nitric oxide level in Kyrgyz population. , 2019, , .		0
72	Comparative analysis of the level of NO in exhaled air between the residents of the low altitude and high altitude of Kyrgyzstan. , 2019, , .		0

#	Article	IF	CITATIONS
73	Pulmonary vein banding-induced pulmonary venous congestion causes pulmonary hypertension in rats. , 2021, , .		0