Eugene A Kotomin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6282430/eugene-a-kotomin-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 435
papers
 9,631
citations
 49
h-index
 77
g-index

 461
ext. papers
 10,380
ext. citations
 2.7
avg, IF
 6.15
L-index

#	Paper	IF	Citations
435	Influence of Au, Ag, and Cu Adatoms on Optical Properties of TiO2 (110) Surface: Predictions from RT-TDDFT Calculations. <i>Crystals</i> , 2022 , 12, 452	2.3	
434	Evidence for the formation of two types of oxygen interstitials in neutron-irradiated PAlO single crystals. <i>Scientific Reports</i> , 2021 , 11, 20909	4.9	3
433	Water Splitting on Multifaceted SrTiO3 Nanocrystals: Computational Study. <i>Catalysts</i> , 2021 , 11, 1326	4	3
432	Extraction P yrolytic Method for TiO2 Polymorphs Production. <i>Crystals</i> , 2021 , 11, 431	2.3	19
431	The local atomic structure and thermoelectric properties of Ir-doped ZnO: hybrid DFT calculations and XAS experiments. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4948-4960	7.1	3
430	BaCoO monoclinic structure and chemical bonding analysis: hybrid DFT calculations. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 17493-17501	3.6	3
429	Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1693-1700	7.1	11
428	The electronic properties of SrTiO with oxygen vacancies or substitutions. <i>Scientific Reports</i> , 2021 , 11, 23341	4.9	4
427	First principles calculations of the vibrational properties of single and dimer F-type centers in corundum crystals. <i>Journal of Chemical Physics</i> , 2020 , 153, 134107	3.9	O
426	Hybrid density functional theoretical study of NASICON-type NaTi(PO) (x = 1-4). <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 11861-11870	3.6	5
425	Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. <i>Scientific Reports</i> , 2020 , 10, 7810	4.9	26
424	Interdependence of Oxygenation and Hydration in Mixed-Conducting (Ba,Sr)FeO3lPerovskites Studied by Density Functional Theory. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 11780-11789	3.8	12
423	Ab initio calculations of pure and Co+2-doped MgF2 crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2020 , 470, 10-14	1.2	1
422	First-principles comparative study of perfect and defective CsPbX (X = Br, I) crystals. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 3914-3920	3.6	18
421	Oxygen Evolution Reaction on a N-Doped Co0.5-Terminated Co3o4 (001) Surface. <i>Proceedings of the Latvian Academy of Sciences</i> , 2020 , 74, 396-403	0.3	
420	Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies. <i>Low Temperature Physics</i> , 2020 , 46, 1185-1195	0.7	8
419	Hybrid density functional calculations of hyperfine coupling tensor for hole-type defects in MgAl2O4. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2020 , 464, 60-64	1.2	7

(2019-2020)

418	First-Principles Modeling of Oxygen Adsorption on Ag-Doped LaMnO3 (001) Surface. <i>Journal of Electronic Materials</i> , 2020 , 49, 1421-1434	1.9	3	
4 ¹ 7	Proton, Hydroxide Ion, and Oxide Ion Affinities of Closed-Shell Oxides: Importance for the Hydration Reaction and Correlation to Electronic Structure. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1277-1284	3.8	12	
416	Thermal annealing of radiation damage produced by swift 132Xe ions in MgO single crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2020 , 462, 163-168	1.2	12	
415	First principles calculations of oxygen reduction reaction at fuel cell cathodes. <i>Current Opinion in Electrochemistry</i> , 2020 , 19, 122-128	7.2	8	
414	Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated AlO single crystals. <i>Scientific Reports</i> , 2020 , 10, 15852	4.9	7	
413	Low temperature structural transformations on the (001) surface of SrTiO3 single crystals. <i>Low Temperature Physics</i> , 2020 , 46, 740-750	0.7	6	
412	Role of Intrinsic Dipoles in the Evaporation-Driven Assembly of Perovskite Nanocubes into Energy-Harvesting Composites. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 1900533	1.6	2	
411	On the Way to Optoionics. <i>Helvetica Chimica Acta</i> , 2020 , 103, e2000073	2	11	
410	Thermodynamic stability of non-stoichiometric SrFeO: a hybrid DFT study. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 3918-3931	3.6	18	
409	Ab initio simulation of (Ba,Sr)TiO3 and (Ba,Ca)TiO3 perovskite solid solutions. <i>Solid State Ionics</i> , 2019 , 337, 76-81	3.3	9	
408	Defect-Induced Effects in Nanomaterials. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1900181	1.3		
407	Manifestation of dipole-induced disorder in self-assembly of ferroelectric and ferromagnetic nanocubes. <i>Nanoscale</i> , 2019 , 11, 7293-7303	7.7	7	
406	First principles calculations on CeO2 doped with Tb3+ ions. <i>Optical Materials</i> , 2019 , 90, 76-83	3.3	2	
405	First-principles calculations of iodine-related point defects in CsPbI. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 7841-7846	3.6	17	
404	Nitrogen interstitial defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. <i>Materials Today Communications</i> , 2019 , 21, 100616	2.5	8	
403	Interface-induced enhancement of piezoelectricity in the (SrTiO)/(BaTiO) superlattice for energy harvesting applications. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 23541-23551	3.6	6	
402	The first principles calculations of CO2 adsorption on (101🗅) ZnO surface 2019 ,		5	
401	Theoretical and Experimental Study of (Ba,Sr)TiO3 Perovskite Solid Solutions and BaTiO3/SrTiO3 Heterostructures. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 2031-2036	3.8	15	

400	First Principles Simulations on Migration Paths of Oxygen Interstitials in MgAl2O4. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1800282	1.3	6
399	Ab Initio Modeling of Y and O Solute Atom Interaction in Small Clusters within the bcc Iron Lattice. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1800346	1.3	2
398	Kinetics of the electronic center annealing in Al2O3 crystals. <i>Journal of Nuclear Materials</i> , 2018 , 502, 295-300	3.3	15
397	Ab initio modelling of the initial stages of the ODS particle formation process. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2018 , 435, 70-73	1.2	4
396	Ab initio simulations on charged interstitial oxygen migration in corundum. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2018 , 435, 74-78	1.2	10
395	Anomalous Kinetics of Diffusion-Controlled Defect Annealing in Irradiated Ionic Solids. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 28-32	2.8	23
394	Ab initio modelling of the Y, O, and Ti solute interaction in fcc-Fe matrix. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2018 , 433, 106-110	1.2	0
393	Kinetic Monte Carlo modeling of Y2O3 nano-cluster formation in radiation resistant matrices. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2018 , 434, 13-22	1.2	
392	Comparison of the F-type center thermal annealing in heavy-ion and neutron irradiated Al2O3 single crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2018 , 433, 93-97	1.2	24
391	First-Principles Modelling of N-Doped Co3O4. <i>Latvian Journal of Physics and Technical Sciences</i> , 2018 , 55, 36-42	0.5	1
390	Kinetics of dimer F2 type center annealing in MgF2 crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2018 , 435, 79-82	1.2	12
389	Theoretical investigations of nitrogen doping on Co3O4 for water dissociation catalytically activity. Journal of Physics: Conference Series, 2018, 1115, 032032	0.3	1
388	Transition levels of acceptor impurities in ZnO crystals by DFT-LCAO calculations. <i>Journal of Physics: Conference Series</i> , 2018 , 1115, 042064	0.3	О
387	Dopant solubility in ceria: alloy thermodynamics combined with the DFT+U calculations. <i>Solid State Ionics</i> , 2018 , 325, 258-264	3.3	1
386	Impact of point defects on the elastic properties of BaZrO3: Comprehensive insight from experiments and ab initio calculations. <i>Acta Materialia</i> , 2018 , 160, 247-256	8.4	14
385	Surface termination effects on the oxygen reduction reaction rate at fuel cell cathodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11929-11940	13	28
384	Use of site symmetry in supercell models of defective crystals: polarons in CeO. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 8340-8348	3.6	14
383	(Invited) The Effect of (La,Sr)MnO 3 Cathode Surface Termination on Its Electronic Structure. <i>ECS Transactions</i> , 2017 , 77, 67-73	1	2

(2016-2017)

382	Thermodynamic stability of stoichiometric LaFeO and BiFeO: a hybrid DFT study. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 3738-3755	3.6	16
381	Analysis of self-trapped hole mobility in alkali halides and metal halides. <i>Solid State Ionics</i> , 2017 , 302, 3-6	3.3	21
380	First-principles calculations of oxygen interstitials in corundum: a site symmetry approach. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 25245-25251	3.6	14
379	Electromechanical Properties of BaSrTiO Perovskite Solid Solutions from First-Principles Calculations. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 9409-9414	2.8	10
378	First-principles Study of Perovskite Ultrathin Films: Stability and Confinement Effects. <i>Israel Journal of Chemistry</i> , 2017 , 57, 509-521	3.4	7
377	Analysis of the U L 3 -edge X-ray absorption spectra in UO 2 using molecular dynamics simulations. <i>Progress in Nuclear Energy</i> , 2017 , 94, 187-193	2.3	8
376	Stabilization of primary mobile radiation defects in MgF2 crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2016 , 374, 24-28	1.2	28
375	Kinetics of F center annealing and colloid formation in Al2O3. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2016 , 374, 107-110	1.2	33
374	Ab initio simulations on migration paths of interstitial oxygen in corundum. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2016 , 374, 29-34	1.2	13
373	Charged oxygen interstitials in corundum: first principles simulations. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2016 , 13, 932-936		2
372	Ab initio modelling of YID cluster formation in Fe lattice. <i>Physica Status Solidi (B): Basic Research</i> , 2016 , 253, 2136-2143	1.3	4
371	Theoretical analysis of the kinetics of low-temperature defect recombination in alkali halide crystals. <i>Low Temperature Physics</i> , 2016 , 42, 588-593	0.7	22
370	Surface Segregation Entropy of Protons and Oxygen Vacancies in BaZrO3. <i>Chemistry of Materials</i> , 2016 , 28, 1363-1368	9.6	32
369	First principles study of confinement effects for oxygen vacancies in BaZrO[[001] ultra-thin films. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9902-8	3.6	13
368	Large-Scale Modeling of Defects in Advanced Oxides: Oxygen Vacancies in BaZrO3 Crystals 2016 , 187-	198	
367	Void lattice formation in electron irradiated CaF2: Statistical analysis of experimental data and cellular automata simulations. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2016 , 368, 138-143	1.2	5
366	First Principles Modeling of Pd-doped (La,Sr)(Co,Fe)O3 Complex Perovskites. Fuel Cells, 2016, 16, 267-2	271 .9	5
365	Low-temperature radiation effects in wide gap materials. Low Temperature Physics, 2016, 42, 537-538	0.7	

364	Interpretation of the U L3-edge EXAFS in uranium dioxide using molecular dynamics and density functional theory simulations. <i>Journal of Physics: Conference Series</i> , 2016 , 712, 012091	0.3	1
363	Ab initio modelling of oxygen vacancies and protonic defects in La1\(\mathbb{R}\)SrxFeO3\(\mathbb{D}\)erovskite solid solutions. Journal of Materials Chemistry A, 2016 , 4, 13093-13104	13	28
362	The effective diffusion coefficient in a one-dimensional discrete lattice with the inclusions. <i>Physica B: Condensed Matter</i> , 2015 , 470-471, 50-52	2.8	3
361	Ab Initio Study of BiFeO3: Thermodynamic Stability Conditions. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2847-51	6.4	38
360	First principles modeling of Ag adsorption on the LaMnO3 (001) surfaces. <i>Solid State Ionics</i> , 2015 , 273, 46-50	3.3	1
359	Hydration entropy of BaZrO3 from first principles phonon calculations. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7639-7648	13	53
358	Thermodynamic properties of neutral and charged oxygen vacancies in BaZrO3 based on first principles phonon calculations. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 20765-74	3.6	39
357	Ab initio simulations on Frenkel pairs of radiation defects in corundum. <i>IOP Conference Series:</i> Materials Science and Engineering, 2015 , 77, 012001	0.4	4
356	Water interaction with perfect and fluorine-doped Co3O4 (100) surface. <i>Solid State Ionics</i> , 2015 , 277, 77-82	3.3	19
355	Confinement effects for the F center in non-stoichiometric BaZrO3 ultrathin films. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 139-143	1.3	6
354	Ab initio modeling of radiation damage in MgF2 crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2014 , 326, 314-317	1.2	14
353	Hydrogen induced metallization of ZnO (11 00) surface: Ab initio study. <i>Thin Solid Films</i> , 2014 , 553, 38-4	22.2	13
352	Theory of non-equilibrium critical phenomena in three-dimensional condensed systems of charged mobile nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 13974-83	3.6	5
351	Static and dynamic screening effects in the electrostatic self-assembly of nano-particles. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 25449-60	3.6	10
350	Hydrogen adsorption on the ZnO \$(1bar{1}00)\$ surface: ab initio hybrid density functional linear combination of atomic orbitals calculations. <i>Physica Scripta</i> , 2014 , 89, 045801	2.6	12
349	Comparison of Permeation Measurements and Hybrid Density-Functional Calculations on Oxygen Vacancy Transport in Complex Perovskite Oxides. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 29542-295	53 ⁸	22
348	Ab Initio Thermodynamics of Oxygen Vacancies and Zinc Interstitials in ZnO. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4238-42	6.4	13
347	Statistical characterization of self-assembled charged nanoparticle structures. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2014 , 211, 288-293	1.6	3

346	Radiation defects in complex perovskite solid solutions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2014 , 326, 243-246	1.2	1
345	Ab initio thermodynamic study of (Ba,Sr)(Co,Fe)O3 perovskite solid solutions for fuel cell applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14320	13	22
344	Theoretical modeling of antiferrodistortive phase transition for SrTiO3 ultrathin films. <i>Physical Review B</i> , 2013 , 88,	3.3	10
343	First-principles modeling of the H color centers in MgF2 crystals. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2013 , 10, 160-164		4
342	Theoretical modeling of the complexes of iron impurities and oxygen vacancies in SrTiO3. <i>Applied Physics Letters</i> , 2013 , 102, 112913	3.4	28
341	Ab initio study of phase competition in (La1 [Ł,Src)CoO3 solid solutions. <i>Solid State Ionics</i> , 2013 , 230, 32-36	3.3	14
340	Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 5443-71	3.6	208
339	Formation and migration of oxygen vacancies in La(1-x)Sr(x)Co(1-y)Fe(y)O(3- perovskites: insight from ab initio calculations and comparison with Ba(1-x)Sr(x)Co(1-y)Fe(y)O(3- <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 911-8	3.6	95
338	First principles calculations of (Ba,Sr)(Co,Fe)O3[structural stability. Solid State Ionics, 2013, 230, 21-26	3.3	14
337	Ab initio simulations of oxygen interaction with surfaces and interfaces in uranium mononitride. <i>Journal of Nuclear Materials</i> , 2013 , 435, 102-106	3.3	16
336	A Comparative Ab Initio Thermodynamic Study of Oxygen Vacancies in ZnO and SrTiO3: Emphasis on Phonon Contribution. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13776-13784	3.8	68
335	Atomic and electronic structure of hydrogen on ZnO (11 00) surface: ab initio hybrid calculations. <i>IOP Conference Series: Materials Science and Engineering</i> , 2013 , 49, 012054	0.4	
334	Phase competition in (La1 [Ł,Src)CoO3 solid solutions: ab initio thermodynamic study. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 864-869	1.3	10
333	The first-principles treatment of the electron-correlation and spin-orbital effects in uranium mononitride nuclear fuels. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4482-90	3.6	63
332	The Intrinsic Defects, Disordering, and Structural Stability of BaxSr1⊠CoyFe1ŪO3IPerovskite Solid Solutions. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18605-18611	3.8	53
331	Note: Effective diffusion coefficient in heterogeneous media. <i>Journal of Chemical Physics</i> , 2012 , 137, 166101	3.9	7
330	Jahn-Teller effect in the phonon properties of defective SrTiO3 from first principles. <i>Physical Review B</i> , 2012 , 85,	3.3	46
329	Ab initiomodelling of UN grain boundary interfaces. <i>IOP Conference Series: Materials Science and Engineering</i> , 2012 , 38, 012058	0.4	

328	CNT Arrays Grown upon Catalytic Nickel Particles as Applied in the Nanoelectronic Devices: Ab Initio Simulation of Growth Mechanism. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2012 , 101-114	0.2	1
327	First-principles phonon calculations of Fe⊞ impurity in SrTiO□ <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 104024	1.8	3
326	Oxygen exchange kinetics on solid oxide fuel cell cathode materials general trends and their mechanistic interpretation. <i>Journal of Materials Research</i> , 2012 , 27, 2000-2008	2.5	76
325	Ab initiocalculations of theFcenters in MgF2bulk and on the (001) surface. <i>Physica Scripta</i> , 2012 , 86, 03	35 <u>3</u> 04	8
324	Ab initiocalculations of theHcenters in MgF2crystals. <i>IOP Conference Series: Materials Science and Engineering</i> , 2012 , 38, 012041	0.4	
323	The effect of Zn vacancies and Ga dopants on the electronic structure of ZnO:Ab initiosimulations. <i>IOP Conference Series: Materials Science and Engineering</i> , 2012 , 38, 012015	0.4	4
322	Interaction Between Oxygen and Yttrium Impurity Atoms as well as Vacancies in fcc Iron Lattice: Ab Initio Modeling. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2012 , 149-159	0.2	2
321	Pattern formation kinetics for charged molecules on surfaces: microscopic correlation function analysis. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 14626-33	3.4	5
320	Phonon calculations in cubic and tetragonal phases of SrTiO3: A comparative LCAO and plane-wave study. <i>Physical Review B</i> , 2011 , 83,	3.3	71
319	The non-equilibrium charge screening effects in diffusion-driven systems with pattern formation. <i>Journal of Chemical Physics</i> , 2011 , 135, 034702	3.9	10
318	Modeling of yttrium, oxygen atoms and vacancies in 🛭 ron lattice. <i>Journal of Nuclear Materials</i> , 2011 , 416, 40-44	3.3	7
317	Ab initio modeling of oxygen impurity atom incorporation into uranium mononitride surface and sub-surface vacancies. <i>Journal of Nuclear Materials</i> , 2011 , 416, 200-204	3.3	29
316	Simulations on the mechanism of CNT bundle growth upon smooth and nanostructured Ni as well as EAl2O3 catalysts. <i>Open Physics</i> , 2011 , 9,	1.3	3
315	Ab initio calculations of the atomic and electronic structure of MgF2 (011) and (111) surfaces. <i>Open Physics</i> , 2011 , 9,	1.3	4
314	First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1 perovskites. <i>Solid State Ionics</i> , 2011 , 188, 1-5	3.3	80
313	Confinement effects for ionic carriers in SrTiO3 ultrathin films: first-principles calculations of oxygen vacancies. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 923-6	3.6	13
312	First Principles Calculations of Oxygen Vacancy Formation and Migration in Ba1\(\text{BSrxCo1}\(\text{FeyO3}\(\text{Perovskites}. \) Journal of the Electrochemical Society, 2011 , 159, B219-B226	3.9	74
311	A Comparative Hybrid DFT Study of Phonons in Several SrTiO3 Phases. <i>Integrated Ferroelectrics</i> , 2011 , 123, 18-25	0.8	3

(2009-2011)

310	First-Principles Modeling of Oxygen Interaction with SrTiO3(001) Surface: Comparative Density-Functional LCAO and Plane-Wave Study. <i>Integrated Ferroelectrics</i> , 2011 , 123, 10-17	0.8	11
309	DFT calculations of point defects on UN(001) surface. Surface Science, 2011, 605, 396-400	1.8	22
308	Atomistic theory of mesoscopic pattern formation induced by bimolecular surface reactions between oppositely charged molecules. <i>Journal of Chemical Physics</i> , 2011 , 135, 224503	3.9	5
307	First Principles Modeling of Oxygen Mobility in Perovskite SOFC Cathode and Oxygen Permeation Membrane Materials. <i>ECS Transactions</i> , 2011 , 35, 823-830	1	10
306	The Structural Disorder and Lattice Stability of (Ba,Sr)(Co,Fe)O3 Complex Perovskites. <i>ECS Transactions</i> , 2011 , 35, 2077-2084	1	8
305	Pathways for Oxygen Incorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysis for (La, Sr)MnO3\(\text{IJ}\) Journal of Physical Chemistry C, 2010 , 114, 3017-3027	3.8	142
304	Microscopic approach to the kinetics of pattern formation of charged molecules on surfaces. <i>Physical Review E</i> , 2010 , 82, 021602	2.4	8
303	First-principles modelling of complex perovskite (Ba1-xSrx)(Co1-yFey)O3-Ifor solid oxide fuel cell and gas separation membrane applications. <i>Energy and Environmental Science</i> , 2010 , 3, 1544	35.4	70
302	Ab initio calculations of MgF2 (001) and (011) surface structure. <i>Physica B: Condensed Matter</i> , 2010 , 405, 2125-2127	2.8	25
301	Ab initio simulation of yttrium oxide nanocluster formation on fcc Fe lattice. <i>Journal of Nuclear Materials</i> , 2010 , 406, 345-350	3.3	18
300	Ab initio calculations of Nb doped SrTiO3. <i>Physica B: Condensed Matter</i> , 2010 , 405, 3164-3166	2.8	12
299	Void superlattice formation in electron irradiated CaF2: Theoretical analysis. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 3055-3058	1.2	4
298	Basic properties of the F-type centers in halides, oxides and perovskites. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 3084-3089	1.2	126
297	Helium behavior in oxide nuclear fuels: First principles modeling. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 3090-3094	1.2	29
296	Implementing first principles calculations of defect migration in a fuel performance code for UN simulations. <i>Journal of Nuclear Materials</i> , 2009 , 393, 292-299	3.3	23
295	A comparative ab initio study of bulk and surface oxygen vacancies in PbTiO3, PbZrO3 and SrTiO3 perovskites. <i>Solid State Communications</i> , 2009 , 149, 1359-1362	1.6	44
294	First principles calculations of oxygen adsorption on the UN(001) surface. <i>Surface Science</i> , 2009 , 603, 50-53	1.8	20
293	Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces. <i>Surface Science</i> , 2009 , 603, 326-335	1.8	94

292	Chemisorption of a molecular oxygen on the UN(001) surface: Ab initio calculations. <i>Journal of Nuclear Materials</i> , 2009 , 393, 504-507	3.3	23
291	First-principles study of bulk and surface oxygen vacancies in SrTiO3 crystal. <i>European Physical Journal B</i> , 2009 , 72, 53-57	1.2	81
290	Ab initio DFT+U study of He atom incorporation into UO(2) crystals. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7241-7	3.6	65
289	The Effect of Oxygen Vacancies on the Atomic and Electronic Structure of Cubic ABO3 Perovskite Bulk and the (001) Surface: Ab initio Calculations. <i>Ferroelectrics</i> , 2009 , 379, 191-198	0.6	11
288	Oxygen Incorporation Reaction into Mixed Conducting Perovskites: a Mechanistic Analysis for (La,Sr)MnO3 Based on DFT Calculations. <i>ECS Transactions</i> , 2009 , 25, 2753-2760	1	9
287	Enhanced interfacial lithium storage in nanocomposites of transition metals with LiF and Li2O: Comparison of DFT calculations and experimental studies. <i>Solid State Sciences</i> , 2008 , 10, 491-495	3.4	73
286	Hybrid DFT calculations of theFcenters in cubic ABO3perovskites. <i>Journal of Physics: Conference Series</i> , 2008 , 117, 012019	0.3	6
285	Adsorption of atomic and molecular oxygen on the LaMnO3(001) surface: ab initio supercell calculations and thermodynamics. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 4644-9	3.6	104
284	The electronic properties of an oxygen vacancy at ZrO(2)-terminated (001) surfaces of a cubic PbZrO(3): computer simulations from the first principles. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 4258-63	3.6	22
283	First-Principles Modeling of LaMnO3 SOFC Cathode Material. ECS Transactions, 2008, 13, 301-306	1	4
282	Ab initio modeling of spin and charge ordering and lattice dynamics in CaFeO(3) crystals. <i>Journal of Chemical Physics</i> , 2008 , 129, 214704	3.9	5
281	Electronic structure and thermodynamic stability of LaMnO3 and La1\(\mathbb{R}\)SrxMnO3 (001) surfaces: Ab initio calculations. <i>Physical Review B</i> , 2008 , 78,	3.3	79
280	Ab initiostudy of bulk and surface iron defects in SrTiO3. <i>Journal of Physics: Conference Series</i> , 2008 , 117, 012001	0.3	2
279	A comparative ab initio study of Cu overlayers on BaTiO3(001) and MgO(001) substrates. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 980-985	1.3	3
278	Atomistic Modeling of a New Storage. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2008 , 634, 2055-2055	1.3	
277	A first-principles DFT study of UN bulk and (001) surface: comparative LCAO and PW calculations. Journal of Computational Chemistry, 2008 , 29, 2079-87	3.5	36
276	First principles modelling of oxygen impurities in UN nuclear fuels. <i>Journal of Nuclear Materials</i> , 2008 , 377, 492-495	3.3	23
275	First-principles modelling of radiation defects in advanced nuclear fuels. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2008 , 266, 2671-2675	1.2	13

(2006-2007)

274	Jahn-Teller distortion around Fe4+ in Sr(FexTi1\(\)D3Ifrom x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy. <i>Physical Review B</i> , 2007 , 76,	3.3	102
273	Differences in the metallic film growth mode between perfect and defective MgO surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2007 , 255, 219-222	1.2	8
272	First-principles modelling of defects in advanced nuclear fuels. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2007 , 4, 1193-1196		24
271	Periodic models in quantum chemical simulations of F centers in crystalline metal oxides. <i>International Journal of Quantum Chemistry</i> , 2007 , 107, 2956-2985	2.1	69
270	Enhanced lithium storage and chemical diffusion in metal-LiF nanocomposites: Experimental and theoretical results. <i>Physical Review B</i> , 2007 , 76,	3.3	31
269	Electronic structure and thermodynamic stability of double-layered SrTiO3(001) surfaces: Ab initio simulations. <i>Physical Review B</i> , 2007 , 75,	3.3	83
268	Electronic and magnetic structure of La0.875Sr0.125MnO3 calculated by means of hybrid density-functional theory. <i>Physical Review B</i> , 2007 , 76,	3.3	24
267	Atomic scale DFT simulations of point defects in uranium nitride. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 106208	1.8	40
266	Atomic and electronic structure of perfect and defective PbZrO3 perovskite: Hybrid DFT calculations of cubic and orthorhombic phases. <i>Computational Materials Science</i> , 2007 , 41, 195-201	3.2	31
265	Thermodynamic stability and disordering in La Sr1MnO3 solid solutions. <i>Solid State Ionics</i> , 2006 , 177, 217-222	3.3	31
264	Calculations for antiferrodistortive phase of SrTiO3perovskite: hybrid density functional study. Journal of Physics Condensed Matter, 2006 , 18, 4845-4851	1.8	46
263	Size and shape of three-dimensional Cu clusters on a MgO(001) substrate: Combined ab initio and thermodynamic approach. <i>Physical Review B</i> , 2006 , 74,	3.3	11
262	Generalised Maxwell-Garnett equation: application to electrical and chemical transport. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 1310-4	3.6	24
261	Structural Phase Transition and Photo-Charge Carrier Transport in SrTiO3. Ferroelectrics, 2006, 337, 179	9-₫ & 8	7
260	First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3. <i>Physical Review B</i> , 2006 , 73,	3.3	138
259	Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. <i>Physical Review Letters</i> , 2006 , 96, 058302	7.4	172
258	DFT study of a single F center in cubic SrTiO3 perovskite. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 2173-2183	2.1	28
257	Nano-ionics in the context of lithium batteries. <i>Journal of Power Sources</i> , 2006 , 159, 171-178	8.9	164

256	A comparative analysis of electron spectroscopy and first-principles studies on Cu(Pd) adsorption on MgO. <i>Surface Science</i> , 2006 , 600, 3815-3820	1.8	16
255	Metal film growth on regular and defective MgO(0 0 1) surface: A comparative ab initio simulation and thermodynamic study. <i>Surface Science</i> , 2006 , 600, L99-L104	1.8	18
254	Ab initio calculations of the BaTiO3 (100) and (110) surfaces. <i>Journal of Electroceramics</i> , 2006 , 16, 289-2	2 92 5	44
253	DFT plane wave calculations of the atomic and electronic structure of LaMnO3 (001) surface. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 2346-50	3.6	49
252	Ab initio simulations on AgCl(111) surface and AgCl(111)/\(\frac{1}{4}\)Al2O3(0001) interface. Computational Materials Science, 2005 , 33, 276-281	3.2	8
251	The electronic and atomic structure of SrTiO3, BaTiO3, and PbTiO3(001) surfaces: Ab initio DFT/HF hybrid calculations. <i>Microelectronic Engineering</i> , 2005 , 81, 472-477	2.5	15
250	Ab initio modeling of copper adhesion on regular BaTiO3(001) surfaces. <i>Microelectronic Engineering</i> , 2005 , 81, 467-471	2.5	7
249	Ab initio calculations of the atomic and electronic structure of layered Ba0.5Sr0.5TiO3 structures. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 118, 15-18	3.1	7
248	Ab initio thermodynamics for the growth of ultra-thin Cu film on a perfect MgO(001) surface. <i>Materials Science and Engineering C</i> , 2005 , 25, 713-717	8.3	1
247	BacSr1BTiO3 perovskite solid solutions: Thermodynamics from ab initio electronic structure calculations. <i>Microelectronic Engineering</i> , 2005 , 81, 478-484	2.5	3
246	Hybrid DFT calculations of the atomic and electronic structure for ABO3 perovskite (0 0 1) surfaces. <i>Surface Science</i> , 2005 , 575, 75-88	1.8	160
245	Large scale computer modelling of point defects in ABO3 perovskites. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2005 , 2, 113-119		4
244	First principles simulations of F centers in cubic SrTiO3. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 153-158		21
243	Coin metal adsorption on defective MgO(001) surface: ab initio study. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2005 , 2, 347-350		5
242	DFT LCAO and plane wave calculations of SrZrO3. <i>Physica Status Solidi (B): Basic Research</i> , 2005 , 242, R11-R13	1.3	26
241	Ab initio thermodynamics of BacSr(1日)TiO3 solid solutions. <i>Physical Review B</i> , 2005 , 71,	3.3	53
240	Comparative density-functional LCAO and plane-wave calculations of LaMnO3 surfaces. <i>Physical Review B</i> , 2005 , 72,	3.3	75
239	Adsorption of atomic and molecular oxygen on the SrTiO3(001) surfaces: Predictions by means of hybrid density functional calculations. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 894, 1		3

(2003-2004)

Adhesion trends and growth mode of ultra-thin copper films on MgO. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 4881-4896	1.8	17
Ab initio calculations of the SrTiO3 (110) polar surface. <i>Physical Review B</i> , 2004 , 69,	3.3	79
Large-Scale Computer Modelling of Point Defects, Polarons and Perovskite Solid Solutions. <i>Defect and Diffusion Forum</i> , 2004 , 226-228, 169-180	0.7	2
Ab initio Calculations of Copper Nanostructures of MgO Substrate. <i>Solid State Phenomena</i> , 2004 , 99-100, 219-222	0.4	
First principles slab calculations of the regular Cu/MgO(001) interface. <i>Surface Science</i> , 2004 , 566-568, 122-129	1.8	11
Comparative study of polar perovskite surfaces. Surface Science, 2004, 566-568, 231-235	1.8	27
Adsorption of single Ag and Cu atoms on regular and defective MgO(0 0 1) substrates: an ab initio study. <i>Vacuum</i> , 2004 , 74, 235-240	3.7	39
A comparative study of Ag and Cu adhesion on an MgO(001) surface. <i>Superlattices and Microstructures</i> , 2004 , 36, 63-72	2.8	12
Experimental and theoretical studies of polaron optical properties in KNbO3 perovskite. <i>Solid State Communications</i> , 2004 , 129, 691-696	1.6	23
Ab initio calculations of atomic an electronic structure of LaMnO and SrMnO. <i>Solid State Ionics</i> , 2004 , 173, 107-111	3.3	39
Atomistic modeling of polar LaMnO3 surfaces. Sensors and Actuators B: Chemical, 2004, 100, 81-87	8.5	8
Ab initio study of the SrTiO3, BaTiO3 and PbTiO3 (001) surfaces. <i>Ceramics International</i> , 2004 , 30, 1989-	-1 9 92	49
First principles simulations of 2D Cu superlattices on the MgO(0 0 1) surface. <i>Applied Surface Science</i> , 2004 , 226, 298-305	6.7	9
Ab initio calculations of the LaMnO3 surface properties. <i>Applied Surface Science</i> , 2004 , 238, 457-463	6.7	27
Computer modelling of point defects in ABO3 perovskites and MgO. <i>Computational Materials Science</i> , 2004 , 30, 376-382	3.2	5
Computer modeling of point defects, polarons, excitons, and surfaces in perovskite ferroelectrics 2003 , 5122, 253		1
The kinetic MC modelling of reversible pattern formation in initial stages of thin metallic film growth on crystalline substrates. <i>Solid State Communications</i> , 2003 , 125, 463-467	1.6	2
Ab initio Hartree-Fock calculations of LaMnO3 (110) surfaces. <i>Solid State Communications</i> , 2003 , 127, 367-371	1.6	26
	Ab initio calculations of the SrTiO3 (110) polar surface. <i>Physical Review B</i> , 2004, 69, Large-Scale Computer Modelling of Point Defects, Polarons and Perovskite Solid Solutions. <i>Defect and Diffusion Forum</i> , 2004, 226-228, 169-180 Ab initio Calculations of Copper Nanostructures of MgO Substrate. <i>Solid State Phenomena</i> , 2004, 99-100, 219-222 First principles slab calculations of the regular Cu/MgO(001) interface. <i>Surface Science</i> , 2004, 566-568, 122-129 Comparative study of polar perovskite surfaces. <i>Surface Science</i> , 2004, 566-568, 231-235 Adsorption of single Ag and Cu atoms on regular and defective MgO(0 0 1) substrates: an ab initio study. <i>Vacuum</i> , 2004, 74, 235-240 A comparative study of Ag and Cu adhesion on an MgO(001) surface. <i>Superlattices and Microstructures</i> , 2004, 36, 63-72 Experimental and theoretical studies of polaron optical properties in KNbO3 perovskite. <i>Solid State Communications</i> , 2004, 129, 691-696 Ab initio calculations of atomic an electronic structure of LaMnO and SrMnO. <i>Solid State Ionics</i> , 2004, 173, 107-111 Atomistic modeling of polar LaMnO3 surfaces. <i>Sensors and Actuators B: Chemical</i> , 2004, 100, 81-87 Ab initio study of the SrTiO3, BaTiO3 and PDTiO3 (001) surfaces. <i>Ceramics International</i> , 2004, 30, 1989 First principles simulations of 2D Cu superlattices on the MgO(0 0 1) surface. <i>Applied Surface Science</i> , 2004, 226, 298-305 Ab initio calculations of the LaMnO3 surface properties. <i>Applied Surface Science</i> , 2004, 238, 457-463 Computer modelling of point defects in ABO3 perovskites and MgO. <i>Computational Materials Science</i> , 2004, 30, 376-382 Computer modelling of point defects, polarons, excitons, and surfaces in perovskite ferroelectrics 2003, 5122, 253 The kinetic MC modelling of reversible pattern formation in initial stages of thin metallic film growth on crystalline substrates. <i>Solid State Communications</i> , 2003, 125, 463-467	Ab initio calculations of the SrTiO3 (110) polar surface. Physical Review B, 2004, 69, 33 Large-Scale Computer Modelling of Point Defects, Polarons and Perovskite Solid Solutions. Defect and Diffusion Forum, 2004, 226-228, 169-180 Ab initio Calculations of Copper Nanostructures of MgO Substrate. Solid State Phenomena, 2004, 99-100, 219-222 First principles slab calculations of the regular Cu/MgO(001) interface. Surface Science, 2004, 566-568, 122-129 Comparative study of polar perovskite surfaces. Surface Science, 2004, 566-568, 231-235 Adsorption of single Ag and Cu atoms on regular and defective MgO(0 0 1) substrates: an ab initio study. Vacuum, 2004, 74, 235-240 A comparative study of Ag and Cu adhesion on an MgO(001) surface. Superlattices and Microstructures, 2004, 36, 63-72 Experimental and theoretical studies of polaron optical properties in KNBO3 perovskite. Solid State Communications, 2004, 129, 691-696 Ab initio calculations of atomic an electronic structure of LaMnO and SrMnO. Solid State Ionics, 2004, 173, 107-111 Atomistic modeling of polar LaMnO3 surfaces. Sensors and Actuators B: Chemical, 2004, 100, 81-87 Ab initio calculations of 2D Cu superlattices on the MgO(0 0 1) surface. Applied Surface Science, 2004, 226, 298-305 Ab initio calculations of the LaMnO3 surface properties. Applied Surface Science, 2004, 238, 457-463 6-7 Computer modelling of point defects in ABO3 perovskites and MgO. Computational Materials Science, 2004, 30, 376-382 Computer modelling of point defects, polarons, excitons, and surfaces in perovskite ferroelectrics 2003, 5122, 253 The kinetic MC modelling of reversible pattern formation in initial stages of thin metallic film growth on crystalline substrates. Solid State Communications, 2003, 125, 463-467 Ab Initio Hartree-Fock calculations of LaMnO3 (110) surfaces. Solid State Communications, 2003, 125, 463-467

220	Ab initio modelling of silver adhesion on the corundum (0001) surface. <i>Materials Science and Engineering C</i> , 2003 , 23, 247-252	8.3	11
219	Modelling of defects and surfaces in perovskite ferroelectrics. <i>Physica Status Solidi (B): Basic Research</i> , 2003 , 236, 253-264	1.3	27
218	Study of the electronic and atomic structure of thermally treated SrTiO3(110) surfaces. <i>Surface and Interface Analysis</i> , 2003 , 35, 998-1003	1.5	22
217	Characterization of the Metalteramic Bonding in the Ag/MgO(001) Interface from ab Initio Calculations. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 11893-11899	3.4	13
216	Semi-empirical calculations of the electronic and atomic structure of polarons and excitons in ABO 3 perovskite crystals. <i>Computational Materials Science</i> , 2003 , 27, 81-86	3.2	33
215	Atomistic simulations of the LaMnO3(110) polar surface. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4180	3.6	16
214	Single impurities in insulators: Ab initio study of Fe-doped SrTiO3. <i>Physical Review B</i> , 2003 , 67,	3.3	62
213	Calculations of Atomic and Electronic Structure for (100) Surfaces of SrTiO3 Perovskite. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 718, 1		
212	Calculations of radiation-induced point defects, polarons and excitons in ferroelectric perovskites. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 191, 22-26	1.2	8
211	Diffusion-controlled annihilation and aggregation of F-centers in thermochemically reduced MgO crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 191, 208-211	1.2	5
210	First-principles calculations of perovskite thin films. <i>Materials Science in Semiconductor Processing</i> , 2002 , 5, 129-134	4.3	5
209	Large-scale modelling of the phase transitions in KTa1NbxO3 perovskite solid solutions. <i>Materials Science in Semiconductor Processing</i> , 2002 , 5, 153-157	4.3	7
208	Modeling of primary defect aggregation in tracks of swift heavy ions in alkali halides. <i>Surface and Coatings Technology</i> , 2002 , 158-159, 269-272	4.4	
207	First-principles calculations for SrTiO3() surface structure. Surface Science, 2002, 513, 211-220	1.8	111
206	The adhesion properties of the Ag/EAl2O3() interface: an ab initio study. <i>Surface Science</i> , 2002 , 513, 343-358	1.8	49
205	Calculations of the effective diffusion coefficient for inhomogeneous media. <i>Journal of Physics and Chemistry of Solids</i> , 2002 , 63, 449-456	3.9	100
204	Modeling of defects and surfaces in perovskite ferroelectrics. <i>Journal of Crystal Growth</i> , 2002 , 237-239, 687-693	1.6	7
203	Quantum chemical modelling of greenluminescence in ABO perovskites. <i>European Physical Journal B</i> , 2002 , 27, 483-486	1.2	46

(2001-2002)

202	Polaronic-type excitons in ferroelectric oxides: Microscopic calculations and experimental manifestation. <i>Physical Review B</i> , 2002 , 65,	3.3	64
201	Quantum chemical modelling of electron polarons and IgreenIluminescence in PbTiO3perovskite crystals. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, L647-L653	1.8	17
200	Quantum chemical modelling of electron polarons and charge-transfer vibronic excitons in BaTiO3perovskite crystals. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 3735-3741	1.8	33
199	Large- Scale ab initio Simulations of Fe-doped SrTiO3perovskites. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 731, 3121		
198	Computer Modeling of Point Defects in Perovskite Crystals. Ferroelectrics, 2002, 268, 59-64	0.6	1
197	Theory of the growth mode for a thin metallic film on an insulating substrate. <i>Surface Science</i> , 2002 , 499, 24-40	1.8	43
196	Large-scale ab initio modelling of defects in perovskites: Fe impurity in SrTiO3. <i>Computational Materials Science</i> , 2002 , 24, 14-20	3.2	8
195	Effect of electron correlation corrections on phase competition in Ag film on MgO substrate. <i>Computational Materials Science</i> , 2002 , 24, 66-71	3.2	5
194	Theoretical Prediction and Experimental Confirmation of Charge Transfer Vibronic Excitons and Their Phase in ABO3 Perovskite Crystals. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 718, 1		
193	Calculations of the Electronic and Atomic Structure and Diffusion of Point Defects in KNbO3 Perovskite Crystals and Relevant KTN Solid Solutions. <i>Materials Research Society Symposia</i> Proceedings, 2002 , 718, 1		
192	Atomistic Theory of the Growth Mode for a Thin Metallic Film on an Isulating Substrate 2002 , 525-534		
191	Calculations of the atomic and electronic structure for SrTiO3 perovskite thin films. <i>Thin Solid Films</i> , 2001 , 400, 76-80	2.2	34
190	Dynamics of F-center annihilation in thermochemically reduced MgO single crystals. <i>Solid State Communications</i> , 2001 , 118, 163-167	1.6	35
189	Some nonlinear properties of ferroelectric smart materials. <i>Physica B: Condensed Matter</i> , 2001 , 304, 330	9- <u>3.</u> §7	9
188	Calculation of the Effective Diffusion Coefficient in Inhomogeneous Solids. <i>Defect and Diffusion Forum</i> , 2001 , 194-199, 163-170	0.7	
187	The kinetics of defect aggregation and metal colloid formation in ionic solids under irradiation. <i>Radiation Effects and Defects in Solids</i> , 2001 , 155, 113-125	0.9	35
186	Modeling of primary defect aggregation in tracks of swift heavy ions in LiF. <i>Physical Review B</i> , 2001 , 64,	3.3	14
185	Kinetics of nanocavity formation based on F-center aggregation in thermochemically reduced MgO single crystals. <i>Physical Review B</i> , 2001 , 64,	3.3	35

184	Quantum chemical modelling of polarons and perovskite solid solutions. <i>Computational Materials Science</i> , 2001 , 21, 530-534	3.2	9
183	Hartree E ock study of adhesion and charge redistribution on the Ag/MgO(0 0 1) interface. <i>Surface Science</i> , 2001 , 482-485, 66-72	1.8	16
182	Computer modeling of metal colloid formation in tracks of swift heavy ions in ionic solids. <i>Radiation Effects and Defects in Solids</i> , 2001 , 155, 145-151	0.9	2
181	Theory of bound polarons in oxide compounds. <i>Physical Review B</i> , 2001 , 63,	3.3	26
180	A new phase in ferroelectric oxides: The phase of charge transfer vibronic excitons. <i>Europhysics Letters</i> , 2001 , 56, 702-708	1.6	40
179	Ab initio modeling of surface structure for SrTiO3 perovskite crystals. <i>Physical Review B</i> , 2001 , 64,	3.3	232
178	A First-Principles Study of the Ag/a-Al2O3(0001) Interface. <i>International Journal of Molecular Sciences</i> , 2001 , 2, 271-280	6.3	5
177	Computer Modeling of Luminescence in ABO3 Perovskites. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 667, 1		1
176	Calculations of Surface Structure for SrTiO3 Perovskite. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 672, 1		1
175	New Polaronic-Type Excitons in Ferroelectric Oxides: INDO-Calculations and Experimental Manifestation. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 677, 4151		4
175 174		2.2	21
	Manifestation. Materials Research Society Symposia Proceedings, 2001, 677, 4151	2.2	
174	Manifestation. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 677, 4151 Atomistic simulation of SrTiO3 and BaTiO3 (110) surface relaxations. <i>Thin Solid Films</i> , 2000 , 358, 1-5		21
174 173	Manifestation. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 677, 4151 Atomistic simulation of SrTiO3 and BaTiO3 (110) surface relaxations. <i>Thin Solid Films</i> , 2000 , 358, 1-5 Calculations of the atomic structure of the KNbO3 (110) surface. <i>Thin Solid Films</i> , 2000 , 374, 64-69 Theoretical and experimental study of primary radiation defects in KNbO3 perovskite crystals.	2.2	21
174 173 172	Manifestation. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 677, 4151 Atomistic simulation of SrTiO3 and BaTiO3 (110) surface relaxations. <i>Thin Solid Films</i> , 2000 , 358, 1-5 Calculations of the atomic structure of the KNbO3 (110) surface. <i>Thin Solid Films</i> , 2000 , 374, 64-69 Theoretical and experimental study of primary radiation defects in KNbO3 perovskite crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 166-167, 299-304 Photoconversion of F+ centers in neutron-irradiated MgO. <i>Nuclear Instruments & Methods in Physics</i>	1.2	21 6 13
174 173 172 171	Manifestation. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 677, 4151 Atomistic simulation of SrTiO3 and BaTiO3 (110) surface relaxations. <i>Thin Solid Films</i> , 2000 , 358, 1-5 Calculations of the atomic structure of the KNbO3 (110) surface. <i>Thin Solid Films</i> , 2000 , 374, 64-69 Theoretical and experimental study of primary radiation defects in KNbO3 perovskite crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 166-167, 299-304 Photoconversion of F+ centers in neutron-irradiated MgO. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 166-167, 220-224 Quantum chemical modelling of electron polarons and excitons in ABO3perovskites. <i>Journal of</i>	2.2 1.2	21 6 13
174 173 172 171 170	Manifestation. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 677, 4151 Atomistic simulation of SrTiO3 and BaTiO3 (110) surface relaxations. <i>Thin Solid Films</i> , 2000 , 358, 1-5 Calculations of the atomic structure of the KNbO3 (110) surface. <i>Thin Solid Films</i> , 2000 , 374, 64-69 Theoretical and experimental study of primary radiation defects in KNbO3 perovskite crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 166-167, 299-304 Photoconversion of F+ centers in neutron-irradiated MgO. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 166-167, 220-224 Quantum chemical modelling of electron polarons and excitons in ABO3perovskites. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, L557-L562 Quantum chemical modelling of perovskite solid solutions. <i>Journal of Physics Condensed Matter</i> ,	1.2 1.8	21 6 13 33 31

(1999-2000)

166	Formation of anion-vacancy clusters and nanocavities in thermochemically reduced MgO single crystals. <i>Physical Review B</i> , 2000 , 62, 9299-9304	3.3	49
165	Theoretical analysis of the growth mode for thin metallic films on oxide substrates. <i>Physical Review Letters</i> , 2000 , 85, 4333-6	7.4	34
164	Ab initio modeling of metal adhesion on oxide surfaces with defects. <i>Physical Review Letters</i> , 2000 , 84, 1256-9	7.4	82
163	Quantum chemical modelling of point defects in KNbO3 perovskite crystals. <i>Computational Materials Science</i> , 2000 , 17, 290-298	3.2	14
162	Semi-empirical simulations of surface relaxation for perovskite titanates. <i>Surface Science</i> , 2000 , 462, 19-35	1.8	107
161	Quantum Mechanical Modelling of Pure and Defective KNbO3 Perovskites 2000 , 3-16		1
160	Computer Modeling of Point Defects, Impurity Self-Ordering Effects and Surfaces in Advanced Perovskite Ferroelectrics. <i>Acta Physica Polonica A</i> , 2000 , 98, 469-481	0.6	1
159	Theoretical Simulations of Surface Relaxation for Perovskite Titanates 2000 , 209-220		
158	The Dynamics of the Hydride Ion in MgO Single Crystals. <i>Defect and Diffusion Forum</i> , 1999 , 169-170, 1-0	0.7	8
157	Ab initio and semiempirical calculations of Hitenters in MgO crystals. <i>Physical Review B</i> , 1999 , 59, 1885-	1890	16
156	Short-pulse excitation and spectroscopy of KNbO3, LiNbO3 and KTiOPO4. <i>Radiation Effects and Defects in Solids</i> , 1999 , 150, 271-276	0.9	7
155	Photoconversion and dynamic hole recycling process in anion vacancies in neutron-irradiated MgO crystals. <i>Physical Review B</i> , 1999 , 60, 3787-3791	3.3	32
154	Photoconversion of F-type centers in thermochemically reduced MgO single crystals. <i>Physical Review B</i> , 1999 , 59, 4786-4790	3.3	32
153	First-principles and semiempirical calculations for bound-hole polarons in KNbO3. <i>Physical Review B</i> , 1999 , 60, 1-5	3.3	79
152	Computer simulations of defects in perovskite KNbO3 crystals. Ferroelectrics, 1999, 229, 69-75	0.6	6
151	Semi-empirical indo and shell-model calculations for perovskites. <i>Radiation Effects and Defects in Solids</i> , 1999 , 151, 243-247	0.9	3
150	ATOMISTIC CALCULATIONS OF (110) SURFACE RELAXATION FOR PEROVSKITE TITANATES. <i>Surface Review and Letters</i> , 1999 , 06, 1215-1219	1.1	5
149	Primary radiation defect creation and separation in AgBr. <i>Radiation Effects and Defects in Solids</i> , 1999 , 150, 185-191	0.9	

148	Comparative theoretical study of the AgMgO (100) and (110) interfaces. <i>Surface Science</i> , 1999 , 441, 373-383	1.8	27
147	The adhesion nature of the Ag/MgO(100) interface: an ab initio study. <i>Chemical Physics Letters</i> , 1998 , 283, 395-401	2.5	44
146	Ab initio simulations of silver film adhesion on \(\frac{1}{2} \) Al2O3 (0 0 0 1) and MgO (1 0 0) surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 141, 73-78	1.2	19
145	The kinetics of CaF2 metallization induced by low-energy electron irradiation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 141, 79-84	1.2	21
144	Radiation-induced point defects in simple oxides. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 141, 1-15	1.2	218
143	Computer Modelling of Radiation Damage in Cation Sublattice of Corundum. <i>Physica Status Solidi</i> (B): Basic Research, 1998 , 207, 69-73	1.3	12
142	Semi-Empirical Calculations of Hole Polarons in MgO and KNbO3 Crystals. <i>Physica Status Solidi (B):</i> Basic Research, 1998 , 208, 15-20	1.3	14
141	Comparative study of [001] surface relaxations of perovskite titanates. <i>Thin Solid Films</i> , 1998 , 318, 65-6	82.2	11
140	Domain wall splitting and creation of the fine domain structure. <i>Thin Solid Films</i> , 1998 , 336, 149-152	2.2	2
139	Ab initio study of the F centers in CaF2: Calculations of the optical absorption, diffusion and binding energies. <i>Solid State Communications</i> , 1998 , 106, 285-288	1.6	28
138	A simple analysis of the HA centre destruction temperatures for doped alkali halides. <i>Solid State Communications</i> , 1998 , 106, 289-291	1.6	4
137	Quantum chemical calculations of KTN solid solutions. <i>Solid State Communications</i> , 1998 , 108, 333-336	1.6	11
136	F center aggregation kinetics in low-energy electron irradiated LiF. <i>Solid State Communications</i> , 1998 , 108, 629-633	1.6	25
135	The microscopic theory of diffusion-controlled defect aggregation. <i>Computational Materials Science</i> , 1998 , 10, 22-27	3.2	
134	A comparative study of the atomic and electronic structure of F centers in ferroelectric KNbO3: Ab initio and semi-empirical calculations. <i>Computational Materials Science</i> , 1998 , 10, 339-345	3.2	11
133	Atomistic simulation of surface relaxation. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, L347-L353	1.8	21
132	Modified Maxwell-Garnett equation for the effective transport coefficients in inhomogeneous media. <i>Journal of Physics A</i> , 1998 , 31, 7227-7234		22
131	[001] Surface Structure in SrTiO3 [Atomistic Study. Surface Review and Letters, 1998 , 05, 341-345	1.1	3

130	Semi-empirical calculations of the Nb-ion positions in doped crystals. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 6271-6276	1.8	18
129	Discrete-lattice theory for Frenkel-defect aggregation in irradiated ionic solids. <i>Physical Review B</i> , 1998 , 58, 8454-8463	3.3	22
128	First-principles and semiempirical calculations for F centers in KNbO3. <i>Physical Review B</i> , 1997 , 56, 8599	9- <u>8</u> .604	62
127	Atomic Structure of the (0001) Corundum Surface. <i>Materials Science Forum</i> , 1997 , 239-241, 633-636	0.4	
126	The Kinetics of Radiation-Induced Defect Accumulation in Ionic Solids. <i>Materials Science Forum</i> , 1997 , 239-241, 387-390	0.4	
125	Theory of Diffusion and Aggregation of Radiation-Induced Defects in MgO and 🖽 l2O3 Crystals. <i>Materials Science Forum</i> , 1997 , 239-241, 391-394	0.4	4
124	Semi-empirical supercell calculations for free- and bound-hole polarons in crystal. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 3559-3573	1.8	4
123	Quantum chemical simulations of bound hold polarons (V Mg centers) in corundum crystals 1997,		2
122	Calculations of F centers in KNbO 3 ferroelectric crystals 1997 , 2967, 150		4
121	Calculations of Diffusion Energies for Defects in MgO Crystals. <i>Defect and Diffusion Forum</i> , 1997 , 143-147, 1231-1236	0.7	14
120	Charge distribution and optical properties of and F centres in crystals. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, L315-L321	1.8	31
119	Quantum-chemical simulations of free and bound hole polarons in corundum crystal. <i>Computational Materials Science</i> , 1997 , 7, 285-294	3.2	10
118	Atomic and electronic structure of the corundum (0001) surface: comparison with surface spectroscopies. <i>Surface Science</i> , 1997 , 370, 190-200	1.8	90
117	Semi-empirical simulations of F-center diffusion in KCl crystals. <i>Journal of Physics and Chemistry of Solids</i> , 1997 , 58, 103-106	3.9	7
116	Atomistic simulation of the [001] surface structure in BaTiO3. <i>Thin Solid Films</i> , 1997 , 296, 76-78	2.2	26
115	Transient optical absorption in KNbO3 crystals irradiated with pulsed electron beam. <i>Solid State Communications</i> , 1997 , 104, 327-330	1.6	26
114	Luminescence properties of KNbO3 crystals. <i>Journal of Luminescence</i> , 1997 , 72-74, 672-674	3.8	18
113	The Diffusion-Controlled Energy Transfer Rate for a Paired Sink Distribution and DonorAcceptor Interaction. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 201, 339-342	1.3	

112	The effect of the particle generation function on the rate of the diffusion-controlled A + B -> B reaction with a permanent particle source. <i>Chemical Physics Letters</i> , 1997 , 270, 229-233	2.5	
111	Semi-Empirical Simulation of Radiation Defects in Oxide Materials 1997 , 51-59		1
110	Hartree - Fock simulation of the Ag/MgO interface structure. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 6577-6584	1.8	25
109	Many-particle peculiarities in the bimolecular reaction kinetics. The effect of sink spatial distribution. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 6729-6735	1.8	1
108	Semi-empirical simulations of the electron centers in MgO crystal. <i>Computational Materials Science</i> , 1996 , 5, 298-306	3.2	37
107	Atomistic Study of Surface Polarization in Superconducting Perovskites. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 440, 305		
106	Pattern Formation and Unusual A + B -> 0 Reaction Kinetics between Charged Reactants in Low Dimensions. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 463, 275		
105	Atomic and Electronic Structure of the Corundum (0001) Surface. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 453, 721		2
104	The Adhesion Nature of Ag/MgO Interface: Hartree-Fock Study. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 458, 15		
103	Microscopic theory of colloid formation in solids under irradiation. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 37, 49-51	3.1	
103		3.1	29
	Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 49-51 Quantum chemical simulations of the optical properties and diffusion of electron centres in mgo crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996,		29
102	Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 49-51 Quantum chemical simulations of the optical properties and diffusion of electron centres in mgo crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 212-214 A comparison of the effective medium and modified Smoluchowski equations for the reaction rate	3.1	
102	Quantum chemical simulations of the optical properties and diffusion of electron centres in mgo crystals. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 37, 212-214 A comparison of the effective medium and modified Smoluchowski equations for the reaction rate of the diffusion-controlled reactions. <i>Journal of Nuclear Materials</i> , 1996 , 232, 253-255 Quantum chemical calculations of the electron center diffusion in MgO crystals. <i>Physica Status</i>	3.1	1
102	Quantum chemical simulations of the optical properties and diffusion of electron centres in mgo crystals. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 37, 212-214 A comparison of the effective medium and modified Smoluchowski equations for the reaction rate of the diffusion-controlled reactions. <i>Journal of Nuclear Materials</i> , 1996 , 232, 253-255 Quantum chemical calculations of the electron center diffusion in MgO crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1996 , 195, 61-66 The kinetics of the bimolecular A+B->0 reaction in condensed matter: Effects of non-equilibrium	3.1 3.3	35
102 101 100	Quantum chemical simulations of the optical properties and diffusion of electron centres in mgo crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 212-214 A comparison of the effective medium and modified Smoluchowski equations for the reaction rate of the diffusion-controlled reactions. Journal of Nuclear Materials, 1996, 232, 253-255 Quantum chemical calculations of the electron center diffusion in MgO crystals. Physica Status Solidi (B): Basic Research, 1996, 195, 61-66 The kinetics of the bimolecular A+B->0 reaction in condensed matter: Effects of non-equilibrium charge screening. Journal of Chemical Physics, 1996, 105, 9486-9492 First-principles calculations of the vibrational properties of H centers in KCl crystals. Physical	3.1 3.3 1.3	1 35 8
1021011009998	Quantum chemical simulations of the optical properties and diffusion of electron centres in mgo crystals. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996, 37, 212-214 A comparison of the effective medium and modified Smoluchowski equations for the reaction rate of the diffusion-controlled reactions. <i>Journal of Nuclear Materials</i> , 1996, 232, 253-255 Quantum chemical calculations of the electron center diffusion in MgO crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1996, 195, 61-66 The kinetics of the bimolecular A+B->0 reaction in condensed matter: Effects of non-equilibrium charge screening. <i>Journal of Chemical Physics</i> , 1996, 105, 9486-9492 First-principles calculations of the vibrational properties of H centers in KCl crystals. <i>Physical Review B</i> , 1996, 53, 24-27	3.1 3.3 1.3 3.9	1 35 8 10

94	Optical properties of silver halide fibres: ageing effects. <i>Journal Physics D: Applied Physics</i> , 1996 , 29, 57	′8- <u>\$</u> 83	5
93	Computer Simulations of I-Center Annealing in KCl and KBr Crystals. Theoretical Interpretation of Thermostimulated Experiments. <i>Physica Status Solidi (B): Basic Research</i> , 1995 , 190, 353-362	1.3	7
92	Kuzovkov and Kotomin reply. <i>Physical Review Letters</i> , 1995 , 75, 587	7.4	1
91	The kinetics of colloid formation in solids under irradiation. <i>Journal of Physics Condensed Matter</i> , 1995 , 7, L481-L486	1.8	4
90	Calculations of the geometry and optical properties of FMg centers and dimer (F2-type) centers in corundum crystals. <i>Physical Review B</i> , 1995 , 51, 8770-8778	3.3	63
89	Modelling of point defects in ⊞AL2O3. <i>Radiation Effects and Defects in Solids</i> , 1995 , 134, 87-90	0.9	7
88	Theory of diffusion-controlled defect aggregation under irradiation: A comparative study of three basic approaches. <i>Radiation Effects and Defects in Solids</i> , 1995 , 136, 209-215	0.9	3
87	Theoretical simulations of I-center annealing in KCl crystals. <i>Radiation Effects and Defects in Solids</i> , 1995 , 134, 83-86	0.9	2
86	The decay kinetics of excitonic luminescence in AgCl crystals. <i>Journal of Physics Condensed Matter</i> , 1995 , 7, 1483-1491	1.8	7
85	First-Principles Simulations of Interstitial Atoms in Ionic Solids. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 408, 509		1
84	A mesoscopic approach to radiation-induced defect aggregation in alkali halides stimulated by the elastic interaction of mobile Frenkel defects. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1994 , 70, 313-327		19
83	Theoretical simulations of hole centres in corundum crystals. <i>Modelling and Simulation in Materials Science and Engineering</i> , 1994 , 2, 109-117	2	5
82	Pair and triple correlations in the A+B>B diffusion-controlled reaction. <i>Physical Review Letters</i> , 1994 , 72, 2105-2108	7.4	6
81	Quantum chemical simulations of hole self-trapping in semi-ionic crystals. <i>International Journal of Quantum Chemistry</i> , 1994 , 52, 1177-1198	2.1	25
80	The kinetics of F-center aggregation under irradiation: many-particle effects in ionic solids. <i>Physica Scripta</i> , 1994 , 50, 720-725	2.6	10
79	Theoretical simulations of the radiation-induced defect processes in insulating materials. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1994 , 91, 52-59	1.2	1
78	The kinetics of diffusion-controlled annealing of Frenkel defects in alkali halide crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1994 , 91, 83-86	1.2	
77	Aggregation of Frenkel defects under irradiation: a mesoscopic approach. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1994 , 91, 87-91	1.2	2

76 Modeling of Point Defects in Corundum Crystals. Journal of the American Ceramic Society, 1994, 77, 2505;2508 15 Calculations of the ground and excited states of F-type centers in corundum crystals. Physical 3.3 103 75 Review B, 1994, 49, 14854-14858 A novel model for F+to F photoconversion in corundum crystals. Journal of Physics Condensed 1.8 74 19 Matter, 1994, 6, L569-L573 Reaction kinetics beyond rate equations: a correlation-function study of the effects of space dimension and reactant mobilities on the bimolecular annihilation reaction. Journal of Physics A, 73 11 **1994**, 27, 1453-1462 The Kinetics of Excitonic Luminescence in Mixed Silver Halides. Materials Research Society Symposia 72 Proceedings, 1994, 348, 309 A Contradiction between Pulsed and Steady-State Studies in the Recombination Kinetics of Close 71 17 1.5 Frenkel Defects in KBr and KCl Crystals. Journal of the Physical Society of Japan, 1994, 63, 2602-2611 Dynamic particle aggregation in the bimolecular A+B->0 reaction. Journal of Chemical Physics, 1993, 70 3.9 15 98, 9107-9114 Defect energies for pure corundum and for corundum doped with transition metal ions. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 69 45 **1993**, 68, 695-709 Mechanism of self-trapped hole motion in corundum crystals. The Philosophical Magazine: Physics of 68 13 Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 67, 557-567 A theoretical study of H-centre migration in alkali halide crystals KCl and NaCl. Philosophical 67 13 Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1993, 68, 1359-1367 Theory of Point Defects and Vacancy Motion in Corundum Crystals. Journal of Solid State Chemistry, 66 3.3 12 **1993**, 106, 27-34 Short-lived luminescence of mixed silver halides. Journal of Luminescence, 1993, 55, 243-252 65 3.8 9 A mesoscopic approach to point-defect clustering in solids during irradiation. Applied Physics A: 64 4 Solids and Surfaces, 1993, 57, 117-121 The Kinetics of Correlated Annealing of F, I Centres in KBr Crystals. Physica Status Solidi (B): Basic 63 1.3 Research, 1993, 175, K39-K42 Effect of nonequilibrium charge screening in A + B -> 0 bimolecular reactions in condensed matter. 62 1.5 13 Journal of Statistical Physics, 1993, 72, 127-144 The kinetics of defect accumulation under irradiation: many-particle effects. Physica Scripta, 1993, 61 2.6 14 47, 585-595 Correlated annealing of radiation defects in alkali halide crystals. Journal of Physics Condensed 60 1.8 18 Matter, 1992, 4, 5901-5910 Theoretical simulation of VK-centre migration in KCl. II. Phenomenological theory. Journal of 1.8 59 Physics Condensed Matter, 1992, 4, 7429-7440

58	Quantum chemical simulations of hole self-trapping in corundum. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 7531-7544	1.8	41
57	Quantum chemical simulation of the self-trapped hole in alpha -Al2O3 crystals. <i>Physical Review Letters</i> , 1992 , 69, 1411-1414	7.4	41
56	Self-organization in the A + B -> 0 reaction of charged particles. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1992 , 191, 172-176	3.3	4
55	Phenomenological kinetics of Frenkel defect recombination and accumulation in ionic solids. <i>Reports on Progress in Physics</i> , 1992 , 55, 2079-2188	14.4	75
54	Kinetics of correlated annealing of radiation defects in alkali halide crystals. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1992 , 65, 512-515	1.2	1
53	Luminescence of mixed crystals of silver halides at high excitation densities. <i>Journal of Applied Spectroscopy</i> , 1991 , 55, 1140-1145	0.7	
52	Radiation-stimulated aggregation of Frenkel defects in solids. <i>Uspekhi Fizicheskikh Nauk</i> , 1990 , 33, 793-8	311	13
51	Formation and interaction of defects in silver halide crystals 1990 , 1228, 140		O
50	The adsorption of SiO molecules on MgO Surfaces as a model for the silicon lever atomic force microscope (AFM). <i>Surface Science</i> , 1990 , 232, 399-406	1.8	13
49	Radiation-stimulated aggregation of Frenkel defects in solids. <i>Uspekhi Fizicheskikh Nauk</i> , 1990 , 160, 1	0.5	8
48	Non-steady-state tunnelling recombination in insulating solids, controlled by defect diffusion and rotation. <i>Radiation Effects and Defects in Solids</i> , 1989 , 111-112, 191-205	0.9	2
47	Quantum-chemical approach to defect formation processes in non-metallic crystals. <i>Radiation Effects and Defects in Solids</i> , 1989 , 111-112, 177-190	0.9	1
46	Kinetics of non-steady state diffusion-controlled tunnelling recombination of defects in insulating crystals. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 6777-6785	1.8	22
45	Kinetics of bimolecular reactions in condensed media: critical phenomena and microscopic self-organisation. <i>Reports on Progress in Physics</i> , 1988 , 51, 1479-1523	14.4	248
44	The MgO(110) surface and CO adsorption thereon. I. Clean (110) surface. <i>Journal of Physics C: Solid State Physics</i> , 1987 , 20, 4983-4990		27
43	The MgO(110) surface and CO adsorption thereon. II. CO adsorption. <i>Journal of Physics C: Solid State Physics</i> , 1987 , 20, 4991-4997		19
42	A periodic ab initio Hartree-Fock calculation on corundum. <i>Chemical Physics Letters</i> , 1987 , 140, 120-123	2.5	55
41	Quantum-chemical simulation of impurity-induced trapping of a hole: (Li)0centre in MgO. <i>Journal of Physics C: Solid State Physics</i> , 1986 , 19, 4183-4199		58

40	Some problems of recombination kinetics. III. Chemical Physics, 1985, 98, 351-360	2.3	13
39	Peculiarities of diffusion-controlled recombination kinetics at long time and/or for great initial reagent concentrations. <i>European Physical Journal D</i> , 1985 , 35, 541-548		1
38	Many-particle effects in kinetics of bimolecular diffusion-controlled reactions. <i>Chemical Physics Letters</i> , 1985 , 117, 266-270	2.5	9
37	Many-particle effects in accumulation kinetics of Frenkel defects in crystals. <i>Journal of Physics C:</i> Solid State Physics, 1984 , 17, 2283-2292		16
36	Temperature and impurity concentration dependences of the efficiency of Frenkel defect accumulation in alkali halide crystals. <i>Solid State Communications</i> , 1984 , 51, 225-229	1.6	7
35	Modification of the indo method for calculating the characteristics of point defects in ionic crystals. <i>Theoretical and Experimental Chemistry</i> , 1984 , 19, 363-369	1.3	
34	Some problems of recombination kinetics. I. <i>Chemical Physics</i> , 1983 , 76, 479-487	2.3	27
33	Some problems of recombination kinetics. II. <i>Chemical Physics</i> , 1983 , 81, 335-347	2.3	24
32	Electronic structure of thallous centres and Tl+ - Vk recombination in KCl crystal. <i>Solid State Communications</i> , 1983 , 46, 625-629	1.6	6
31	Two approaches to the theory of diffusion-controlled reactions. <i>Theoretical and Experimental Chemistry</i> , 1983 , 18, 238-242	1.3	
30	The semiempirical approach to electronic structure of ionic crystal surface. <i>Journal of Physics C:</i> Solid State Physics, 1982 , 15, 847-861		21
29	Effect of reagent density fluctuations on bimolecular reaction kinetics. <i>Chemical Physics Letters</i> , 1982 , 87, 575-578	2.5	13
28	Calculation of energies of radiative tunneling transitions between defects in alkali halides. <i>Solid State Communications</i> , 1982 , 42, 749-752	1.6	25
27	Semiempirical Calculations of Defect Properties in LiF Crystal. II. Electron and Hole Centres and Their Recombination. <i>Physica Status Solidi (B): Basic Research</i> , 1982 , 109, 75-81	1.3	21
26	Theory of tunneling recombination of defects stimulated by their motion I. General formalism. <i>Physica Status Solidi (B): Basic Research</i> , 1982 , 114, 9-34	1.3	33
25	Theory of tunneling recombination of defects stimulated by their motion II. Three recombination mechanisms. <i>Physica Status Solidi (B): Basic Research</i> , 1982 , 114, 287-318	1.3	28
24	Semiempirical Calculations of the Impurity Level Positions with Respect to the Perfect Crystal Bands. <i>Physica Status Solidi (B): Basic Research</i> , 1981 , 103, 581-587	1.3	14
23	Kinetics of Defect Accumulation and Recombination. I. General Formalism. <i>Physica Status Solidi (B):</i> Basic Research, 1981 , 105, 789-801	1.3	16

22	Kinetics of Defect Accumulation and Recombination: II. Diffusion-Controlled Defect Annihilation. <i>Physica Status Solidi (B): Basic Research</i> , 1981 , 108, 37-44	1.3	18
21	Semiempirical Calculations of Defect Properties in LiF Crystal. <i>Physica Status Solidi (B): Basic Research</i> , 1981 , 108, 673-681	1.3	22
20	Kinetics of diffusion-controlled defect accumulation restricted by their recombination. <i>Solid State Communications</i> , 1981 , 40, 173-176	1.6	8
19	Quantum-chemical simulation of Frenkel pairs separation in a LiF crystal. <i>Solid State Communications</i> , 1981 , 40, 669-672	1.6	6
18	Radiation-induced aggregatization of immobile defects. <i>Solid State Communications</i> , 1981 , 39, 351-354	1.6	5
17	Quantum-Chemical Calculations of Electronic and Hole Centres and Surface of NaCl Crystals (II). <i>Physica Status Solidi (B): Basic Research</i> , 1980 , 98, 427-433	1.3	11
16	Influence of defect interaction upon their recombination in ionic crystals. I. <i>Radiation Effects</i> , 1980 , 46, 85-90		9
15	Influence of defect interaction upon their recombination in ionic crystals. II. <i>Radiation Effects</i> , 1980 , 46, 91-96		1
14	Generalised theory of diffusion-controlled defect annealing. <i>Journal of Physics C: Solid State Physics</i> , 1980 , 13, L499-L502		19
13	Quantum-chemical calculations of electronic and hole centres and surface of NaCl crystals (I). <i>Physica Status Solidi (B): Basic Research</i> , 1979 , 96, 91-99	1.3	17
12	Temperature dependence of F-centre accumulation efficiency in doped alkali halides. <i>Journal of Physics C: Solid State Physics</i> , 1977 , 10, 2903-2915		3
11	Theory of diffusion-controlled tunnelling recombination incorporating Coulomb interaction and annihilation. <i>Journal of Physics C: Solid State Physics</i> , 1977 , 10, 4931-4937		3
10	Molecular Cluster Approach to Magnesium and Calcium Oxide Crystals. II. F+ and F Centres. <i>Physica Status Solidi (B): Basic Research</i> , 1976 , 73, 81-86	1.3	7
9	Molecular Cluster Approach to Magnesium and Calcium Oxide Crystals III. Charge Distribution Analysis of Some Hole Centres. <i>Physica Status Solidi (B): Basic Research</i> , 1976 , 73, 483-486	1.3	2
8	The theory of diffusion-limited recombination of donor\(\text{Bcceptor pairs}\). Journal of Luminescence, 1975 , 9, 502-513	3.8	21
7	Molecular cluster approach to magnesium and calcium oxide crystals. I. Perfect crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 72, 787-794	1.3	10
6	Role of tunnelling recombination in radiation-induced F-centre creation in alkali halide crystals at liquid helium temperatures. <i>Journal of Physics C: Solid State Physics</i> , 1975 , 8, 2366-2375		19
5	Theoretical and Experimental Studies of Charge Ordering in CaFeO3 and SrFeO3 Crystals. <i>Physica Status Solidi (B): Basic Research</i> ,2100238	1.3	3

Photo de-mixing in mixed halide perovskites: the roles of ions and electrons. *JPhys Energy*, 4.9 3

Small radius electron and hole polarons in PbX2 (X = F, Cl, Br) crystals: a computational study. *Journal of Materials Chemistry C*, 7.1 3

Nanosession: Ionics - Redox Kinetics, Ion Transport, and Interfaces281-289

The Two Types of Oxygen Interstitials in Neutron-Irradiated Corundum Single Crystals: Joint Experimental and Theoretical Study. *Physica Status Solidi (B): Basic Research*,2100317