Marta GonzÃ; lez-Ãlvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282202/publications.pdf

Version: 2024-02-01

70 papers 1,835 citations

236925 25 h-index 39 g-index

72 all docs 72 docs citations

times ranked

72

2709 citing authors

#	Article	IF	CITATIONS
1	Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics, 2022, 14, 182.	4.5	О
2	Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opinion on Drug Delivery, 2021, 18, 1005-1024.	5.0	8
3	Two-step in vitro-in vivo correlations: Deconvolution and convolution methods, which one gives the best predictability? Comparison with one-step approach. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 185-197.	4.3	6
4	Controlled Delivery Formulations. Pharmaceutics, 2021, 13, 374.	4.5	O
5	An In Vivo Predictive Dissolution Methodology (iPD Methodology) with a BCS Class IIb Drug Can Predict the In Vivo Bioequivalence Results: Etoricoxib Products. Pharmaceutics, 2021, 13, 507.	4.5	7
6	In vitro model for predicting the access and distribution of drugs in the brain using hCMEC/D3 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 120-126.	4.3	19
7	Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study. Pharmaceutics, 2021, 13, 982.	4.5	5
8	Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Brain Levels of Drug in Rat. Pharmaceutics, 2021, 13, 1402.	4.5	4
9	pH-Dependent Molecular Gate Mesoporous Microparticles for Biological Control of Giardia intestinalis. Pharmaceutics, 2021, 13, 94.	4.5	3
10	New In Vitro Methodology for Kinetics Distribution Prediction in the Brain. An Additional Step towards an Animal-Free Approach. Animals, 2021, 11, 3521.	2.3	4
11	Structural basis and effect of copper(II) complexes with 4-oxo-thiazolidine ligands on DNA binding and nuclease activity. Journal of Inorganic Biochemistry, 2020, 203, 110902.	3.5	9
12	Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery. Nanomaterials, 2020, 10, 1290.	4.1	8
13	New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. International Journal of Molecular Sciences, 2020, 21, 6502.	4.1	43
14	Effect of Common Excipients on Intestinal Drug Absorption in Wistar Rats. Molecular Pharmaceutics, 2020, 17, 2310-2318.	4.6	8
15	Effect of thickener on disintegration, dissolution and permeability of common drug products for elderly patients. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 168-176.	4.3	6
16	Candesartan Cilexetil In Vitro–In Vivo Correlation: Predictive Dissolution as a Development Tool. Pharmaceutics, 2020, 12, 633.	4.5	17
17	Oral controlled release dosage forms: dissolution versus diffusion. Expert Opinion on Drug Delivery, 2020, 17, 791-803.	5.0	13
18	Availability of Authorizations from EMA and FDA for Age-Appropriate Medicines Contained in the WHO Essential Medicines List for Children 2019. Pharmaceutics, 2020, 12, 316.	4.5	17

#	Article	IF	CITATIONS
19	Classification of WHO Essential Oral Medicines for Children Applying a Provisional Pediatric Biopharmaceutics Classification System. Pharmaceutics, 2019, 11, 567.	4.5	27
20	Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics, 2019, 16, 2418-2429.	4.6	18
21	Investigation to Explain Bioequivalence Failure in Pravastatin Immediate-Release Products. Pharmaceutics, 2019, 11, 663.	4.5	10
22	lon-pair approach coupled with nanoparticle formation to increase bioavailability of a low permeability charged drug. International Journal of Pharmaceutics, 2019, 557, 36-42.	5.2	11
23	Impact on intestinal permeability of pediatric hyperosmolar formulations after dilution: Studies with rat perfusion method. International Journal of Pharmaceutics, 2019, 557, 154-161.	5.2	6
24	Covalently crosslinked organophosphorous derivatives-chitosan hydrogel as a drug delivery system for oral administration of camptothecin. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 174-183.	4.3	45
25	Closed-Loop Doluisio (Colon, Small Intestine) and Single-Pass Intestinal Perfusion (Colon, Jejunum) in Rat—Biophysical Model and Predictions Based on Caco-2. Pharmaceutical Research, 2018, 35, 2.	3.5	23
26	Ionic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System. Biomacromolecules, 2018, 19, 1294-1304.	5.4	41
27	PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen. European Journal of Pharmaceutical Sciences, 2018, 115, 119-125.	4.0	25
28	Giardiasis: Characteristics, Pathogenesis and New Insights About Treatment. Current Topics in Medicinal Chemistry, 2018, 18, 1287-1303.	2.1	58
29	Long-Circulating Hyaluronan-Based Nanohydrogels as Carriers of Hydrophobic Drugs. Pharmaceutics, 2018, 10, 213.	4.5	4
30	Determination of intestinal permeability using in situ perfusion model in rats: Challenges and advantages to BCS classification applied to digoxin. International Journal of Pharmaceutics, 2018, 551, 148-157.	5.2	18
31	Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 2018, 23, 375.	3.8	11
32	Preclinical models for colonic absorption, application to controlled release formulation development. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 247-259.	4.3	10
33	In Vitro Dissolution as a Tool for Formulation Selection: Telmisartan Two-Step IVIVC. Molecular Pharmaceutics, 2018, 15, 2307-2315.	4.6	26
34	Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 2018, 281, 58-69.	9.9	39
35	Biopharmaceutical optimization in neglected diseases for paediatric patients by applying the provisional paediatric biopharmaceutical classification system. British Journal of Clinical Pharmacology, 2018, 84, 2231-2241.	2.4	18
36	Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B Coculture Models To Predict Intestinal and Colonic Permeability Compared to Caco-2 Monoculture. Molecular Pharmaceutics, 2017, 14, 1264-1270.	4.6	123

#	Article	IF	Citations
37	Investigating drug absorption from the colon: Single-pass vs. Doluisio approaches to in-situ rat large-intestinal perfusion. International Journal of Pharmaceutics, 2017, 527, 135-141.	5.2	28
38	Gated Mesoporous Silica Nanocarriers for a "Two-Step―Targeted System to Colonic Tissue. Molecular Pharmaceutics, 2017, 14, 4442-4453.	4.6	18
39	Comparison of segmental-dependent permeability in human and in situ perfusion model in rat. European Journal of Pharmaceutical Sciences, 2017, 107, 191-196.	4.0	21
40	Enhancing Oral Absorption of \hat{l}^2 -Lapachone: Progress Till Date. European Journal of Drug Metabolism and Pharmacokinetics, 2017, 42, 1-10.	1.6	6
41	Importance and applications of cell- and tissue-based in vitro models for drug permeability screening in early stages of drug development. , 2016, , 3-29.		10
42	Segmental-dependent permeability throughout the small intestine following oral drug administration: Single-pass vs. Doluisio approach to in-situ rat perfusion. International Journal of Pharmaceutics, 2016, 515, 201-208.	5 . 2	46
43	Development of an ion-pair to improve the colon permeability of a low permeability drug: Atenolol. European Journal of Pharmaceutical Sciences, 2016, 93, 334-340.	4.0	17
44	Intestinal Permeability of \hat{l}^2 -Lapachone and Its Cyclodextrin Complexes and Physical Mixtures. European Journal of Drug Metabolism and Pharmacokinetics, 2016, 41, 795-806.	1.6	7
45	In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the single-pass vs. the Doluisio experimental approaches. International Journal of Pharmaceutics, 2015, 480, 1-7.	5.2	63
46	Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties. Journal of Medicinal Chemistry, 2015, 58, 5825-5841.	6.4	88
47	In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model. Journal of Pharmaceutical Sciences, 2015, 104, 3136-3145.	3.3	57
48	Investigating the Discriminatory Power of BCS-Biowaiver <i>in Vitro</i> Methodology to Detect Bioavailability Differences between Immediate Release Products Containing a Class I Drug. Molecular Pharmaceutics, 2015, 12, 3167-3174.	4.6	26
49	Drug gastrointestinal absorption in rat: Strain and gender differences. European Journal of Pharmaceutical Sciences, 2015, 78, 198-203.	4.0	15
50	Variability of permeability estimation from different protocols of subculture and transport experiments in cell monolayers. Journal of Pharmacological and Toxicological Methods, 2015, 71, 21-32.	0.7	31
51	A promising camptothecin derivative: Semisynthesis, antitumor activity and intestinal permeability. European Journal of Medicinal Chemistry, 2014, 83, 366-373.	5.5	22
52	Modified Nonsink Equation for Permeability Estimation in Cell Monolayers: Comparison with Standard Methods. Molecular Pharmaceutics, 2014, 11, 1403-1414.	4.6	18
53	Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio's absorption technique. European Journal of Pharmaceutical Sciences, 2014, 62, 105-110.	4.0	23
54	Innovative in Vitro Method To Predict Rate and Extent of Drug Delivery to the Brain across the Blood–Brain Barrier. Molecular Pharmaceutics, 2013, 10, 3822-3831.	4.6	19

#	Article	IF	CITATIONS
55	Hydrogels: an interesting strategy for smart drug delivery. Therapeutic Delivery, 2013, 4, 157-160.	2.2	22
56	Semisynthesis, Cytotoxic Activity, and Oral Availability of New Lipophilic 9-Substituted Camptothecin Derivatives. ACS Medicinal Chemistry Letters, 2013, 4, 651-655.	2.8	17
57	Mixed-ligand copper(ii)–sulfonamide complexes: effect of the sulfonamide derivative on DNA binding, DNA cleavage, genotoxicity and anticancer activity. Dalton Transactions, 2013, 42, 10244.	3.3	39
58	Nuclease activity and ultrastructural effects of new sulfonamides with anti-leishmanial and trypanocidal activities. Parasitology International, 2012, 61, 604-613.	1.3	25
59	Influence of polyunsaturated fatty acids on Cortisol transport through MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. European Journal of Pharmaceutical Sciences, 2011, 42, 290-299.	4.0	29
60	Unique pharmacology of KAR-2, a potential anti-cancer agent: Absorption modelling and selective mitotic spindle targeting. European Journal of Pharmaceutical Sciences, 2009, 36, 11-19.	4.0	8
61	Oxidative nuclease activity of ferromagnetically coupled $\hat{1}^{1}$ 4-hydroxo- $\hat{1}^{1}$ 4-propionato copper(II) complexes [Cu3(L)2($\hat{1}^{1}$ 4-OH)2($\hat{1}^{1}$ 4-propionato)2] (L=N-(pyrid-2-ylmethyl)R-sulfonamidato, R=benzene, toluene,) Tj ETQq1 1	0.7 &\$ 314	rg B7 /Overlo
62	In vivo and in vitro anti-leishmanial activities of 4-nitro-N-pyrimidin- and N-pyrazin-2-ylbenzenesulfonamides, and N2-(4-nitrophenyl)-N1-propylglycinamide. Bioorganic and Medicinal Chemistry, 2009, 17, 7449-7456.	3.0	38
63	Evaluation of antiproliferative activities and apoptosis induction caused by copper(II)–benzothiazolesulfonamide complexes in Jurkat T lymphocytes and Caco-2 cells. Journal of Biological Inorganic Chemistry, 2008, 13, 1249-1265.	2.6	18
64	A Dinuclear Copper(II) Complex with Adeninate Bridge Ligands and Prominent DNA Cleavage Activity. Structural and Spectroscopic Characterization and Magnetic Properties. Inorganic Chemistry, 2007, 46, 7178-7188.	4.0	65
65	DNA interaction of new copper(II) complexes with sulfonamides as ligands. Journal of Inorganic Biochemistry, 2007, 101, 444-451.	3.5	70
66	Genotoxic Potential of N-(Benzothiazolyl) sulfonamide Copper(II) Complexes on Yeast Cells Transformed with YEGFP Expression Constructs Containing the RAD54 or RNR2 Promoter. European Journal of Inorganic Chemistry, 2006, 2006, 3823-3834.	2.0	10
67	Comparison of Protective Effects against Reactive Oxygen Species of Mononuclear and Dinuclear Cu(II) Complexes withN-Substituted Benzothiazolesulfonamides. Inorganic Chemistry, 2005, 44, 9424-9433.	4.0	51
68	Strong protective action of Copper(II) N-substituted sulfonamide complexes against reactive oxygen species. Journal of Inorganic Biochemistry, 2004, 98, 189-198.	3.5	27
69	DNA cleavage studies of mononuclear and dinuclear copper(II) complexes with benzothiazolesulfonamide ligands. Journal of Biological Inorganic Chemistry, 2003, 8, 644-652.	2.6	88
70	Oxidative DNA damage of mixed copper(II) complexes with sulfonamides and 1,10-phenanthroline. Journal of Inorganic Biochemistry, 2003, 96, 367-374.	3.5	54