
Francesco De Riccardis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6282102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Right- and left-handed PPI helices in cyclic dodecapeptoids. Chemical Communications, 2022, 58, 5253-5256.	4.1	5
2	Role of Lipophilicity in the Activity of Hexameric Cyclic Peptoid Ion Carriers. European Journal of Organic Chemistry, 2021, 2021, 464-472.	2.4	5
3	Structural dynamism of chiral sodium peraza-macrocycle complexes derived from cyclic peptoids. Organic and Biomolecular Chemistry, 2021, 19, 7420-7431.	2.8	Ο
4	Synthesis and characterization of new Na ⁺ complexes of <i>N</i> -benzyl cyclic peptoids and their role in the ring opening polymerization of <scp>l</scp> -lactide. New Journal of Chemistry, 2021, 45, 5410-5420.	2.8	3
5	Elaborate Supramolecular Architectures Formed by Co-Assembly of Metal Species and Peptoid Macrocycles. Crystal Growth and Design, 2021, 21, 3889-3901.	3.0	4
6	Cyclic hexapeptoids with N-alkyl side chains: solid-state assembly and thermal behaviour. CrystEngComm, 2020, 22, 6371-6384.	2.6	6
7	An Entry to Enantioenriched 3,3-Disubstituted Phthalides through Asymmetric Phase-Transfer-Catalyzed Î ³ -Alkylation. Journal of Organic Chemistry, 2020, 85, 7476-7484.	3.2	10
8	Antibacterial and ATP Synthesis Modulating Compounds from <i>Salvia tingitana</i> . Journal of Natural Products, 2020, 83, 1027-1042.	3.0	14
9	Asymmetric trifluoromethylthiolation of azlactones under chiral phase transfer catalysis. Organic and Biomolecular Chemistry, 2020, 18, 2914-2920.	2.8	10
10	Propyne Gas Adsorption in a Cyclic Hexapeptoid: A Combined In Situ XRPD and DFTB Study**. Chemistry - A European Journal, 2020, 26, 14320-14323.	3.3	6
11	The Challenge of Conformational Isomerism in Cyclic Peptoids. European Journal of Organic Chemistry, 2020, 2020, 2981-2994.	2.4	26
12	Peptoid-based siderophore mimics as dinuclear Fe ³⁺ chelators. Dalton Transactions, 2020, 49, 6020-6029.	3.3	15
13	Reverse Turn and Loop Secondary Structures in Stereodefined Cyclic Peptoid Scaffolds. Journal of Organic Chemistry, 2019, 84, 10911-10928.	3.2	20
14	From Cyclic Peptoids to Peraza-macrocycles: A General Reductive Approach. Organic Letters, 2019, 21, 7365-7369.	4.6	5
15	Unprecedented Diastereoselective Arylogous Michael Addition of Unactivated Phthalides. Chemistry - A European Journal, 2019, 25, 7043-7043.	3.3	0
16	Unprecedented Diastereoselective Arylogous Michael Addition of Unactivated Phthalides. Chemistry - A European Journal, 2019, 25, 7131-7141.	3.3	7
17	Role of Side Chains in the Solid State Assembly of Cyclic Peptoids. Crystal Growth and Design, 2019, 19, 125-133.	3.0	13
18	Cyclic Peptoids as Topological Templates: Synthesis via Central to Conformational Chirality Induction. Organic Letters, 2018, 20, 640-643.	4.6	13

#	Article	IF	CITATIONS
19	Topologically Diverse Shapes Accessible by Modular Design of Arylopeptoid Macrocycles. Organic Letters, 2018, 20, 268-271.	4.6	9
20	Macrocyclic Hosts in Asymmetric Phase-Transfer Catalyzed Reactions. Synthesis, 2018, 50, 4777-4795.	2.3	37
21	Cation-Induced Molecular Switching Based on Reversible Modulation of Peptoid Conformational States. Journal of Organic Chemistry, 2018, 83, 12648-12663.	3.2	15
22	Tuning the biomimetic performances of 4-hydroxyproline-containing cyclic peptoids. Organic and Biomolecular Chemistry, 2018, 16, 6708-6717.	2.8	11
23	Cyclic Octamer Peptoids: Simplified Isosters of Bioactive Fungal Cyclodepsipeptides. Molecules, 2018, 23, 1779.	3.8	7
24	Switchable Diastereoselectivity in the Fluoride-Promoted Vinylogous Mukaiyama–Michael Reaction of 2-[(Trimethylsilyl)oxy]furan Catalyzed by Crown Ethers. Journal of Organic Chemistry, 2017, 82, 6629-6637.	3.2	9
25	Molecular recognition and solvatomorphism of a cyclic peptoid: formation of a stable 1D porous framework. CrystEngComm, 2017, 19, 4704-4708.	2.6	17
26	Cyclic Peptoids as Mycotoxin Mimics: An Exploration of Their Structural and Biological Properties. Journal of Organic Chemistry, 2017, 82, 8848-8863.	3.2	29
27	Highly Diastereoselective Crown Ether Catalyzed Arylogous Michael Reaction of 3-Aryl Phthalides. Organic Letters, 2017, 19, 4383-4386.	4.6	15
28	Conformational isomerism in cyclic peptoids and its specification. Organic and Biomolecular Chemistry, 2017, 15, 9932-9942.	2.8	28
29	Catalytic Alkylation of 2-Aryl-2-oxazoline-4-carboxylic Acid Esters Using Cyclopeptoids; Newly Designed Phase-Transfer Catalysts. Synthesis, 2017, 49, 1319-1326.	2.3	11
30	Phakellistatins: An Underwater Unsolved Puzzle. Marine Drugs, 2017, 15, 78.	4.6	23
31	Synthesis, crystallization, X-ray structural characterization and solid-state assembly of a cyclic hexapeptoid with propargyl and methoxyethyl side chains. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 399-412.	1.1	9
32	Iminosugarâ€Cyclopeptoid Conjugates Raise Multivalent Effect in Glycosidase Inhibition at Unprecedented High Levels. Chemistry - A European Journal, 2016, 22, 5151-5155.	3.3	50
33	Solid‣tate Conformational Flexibility at Work: Zipping and Unzipping within a Cyclic Peptoid Single Crystal. Angewandte Chemie - International Edition, 2016, 55, 4679-4682.	13.8	32
34	Ring size effect on the solid state assembly of propargyl substituted hexa- and octacyclic peptoids. CrystEngComm, 2016, 18, 8838-8848.	2.6	15
35	Synthesis and complexing properties of cyclic benzylopeptoids – a new family of extended macrocyclic peptoids. Organic and Biomolecular Chemistry, 2016, 14, 9055-9062.	2.8	20
36	Enantioselective Alkylation of Amino Acid Derivatives Promoted by Cyclic Peptoids under Phase-Transfer Conditions. Journal of Organic Chemistry, 2016, 81, 2494-2505.	3.2	51

FRANCESCO DE RICCARDIS

#	Article	IF	CITATIONS
37	Solid state assembly of cyclic α-peptoids. CrystEngComm, 2014, 16, 3667-3687.	2.6	52
38	Cyclopeptoids as Phaseâ€Transfer Catalysts for the Enantioselective Synthesis of αâ€Amino Acids. European Journal of Organic Chemistry, 2014, 2014, 7793-7797.	2.4	40
39	Gadolinium-binding cyclic hexapeptoids: synthesis and relaxometric properties. Organic and Biomolecular Chemistry, 2014, 12, 424-431.	2.8	44
40	Synthesis of the first examples of iminosugar clusters based on cyclopeptoid cores. Beilstein Journal of Organic Chemistry, 2014, 10, 1406-1412.	2.2	38
41	Structural Effects of Proline Substitution and Metal Binding on Hexameric Cyclic Peptoids. Organic Letters, 2013, 15, 598-601.	4.6	71
42	Cyclopeptoids: a novel class of phase-transfer catalysts. Organic and Biomolecular Chemistry, 2013, 11, 726-731.	2.8	64
43	Ion Transport through Lipid Bilayers by Synthetic Ionophores: Modulation of Activity and Selectivity. Accounts of Chemical Research, 2013, 46, 2781-2790.	15.6	89
44	Carboxyalkyl peptoid PNAs: synthesis and hybridization properties. Tetrahedron, 2012, 68, 499-506.	1.9	13
45	Design, synthesis and antimicrobial properties of non-hemolytic cationic α-cyclopeptoids. Bioorganic and Medicinal Chemistry, 2010, 18, 2010-2018.	3.0	49
46	Properties and Bioactivities of Peptoids Tagged with Heterocycles. Heterocycles, 2010, 82, 981.	0.7	3
47	Design, Synthesis, and Hybridisation of Waterâ€Soluble, Peptoid Nucleic Acid Oligomers Tagged with Thymine. European Journal of Organic Chemistry, 2009, 2009, 6113-6120.	2.4	12
48	An Efficient Modular Approach for the Assembly of S-Linked Glycopeptoids. Organic Letters, 2009, 11, 3898-3901.	4.6	37
49	Size-dependent cation transport by cyclic α-peptoid ion carriers. Organic and Biomolecular Chemistry, 2009, 7, 2851.	2.8	63
50	Cationic calix[4]arenes as anion-selective ionophores. Chemical Communications, 2008, , 2986.	4.1	59
51	Synthesis, structures, and properties of nine-, twelve-, and eighteen-membered N-benzyloxyethyl cyclic α-peptoids. Chemical Communications, 2008, , 3927.	4.1	91
52	Artificial Anion Transporters in Bilayer Membranes. Current Drug Discovery Technologies, 2008, 5, 86-97.	1.2	18
53	Molecular Insights into Azumamide E Histone Deacetylases Inhibitory Activity. Journal of the American Chemical Society, 2007, 129, 3007-3012.	13.7	89
54	Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides and Oligodipeptoids Tagged with Triazines as Recognition Elements. Angewandte Chemie - International Edition, 2007, 46, 2470-2477.	13.8	90

#	Article	IF	CITATIONS
55	On the importance of the pore inner cavity for the ionophoric activity of 1,3-alternate calix[4]arene/steroid conjugates. Tetrahedron, 2006, 62, 5385-5391.	1.9	6
56	Total Synthesis of Azumamides A and E. Angewandte Chemie - International Edition, 2006, 45, 7557-7560.	13.8	39
57	Cover Picture: Azumamides A–E: Histone Deacetylase Inhibitory Cyclic Tetrapeptides from the Marine SpongeMycale izuensis / Total Synthesis of Azumamides A and E Z602047 Z602033 (Angew. Chem. Int. Ed.) Tj	ETQ ıq1 81 0	.78¢4314 rg8T
58	Steroid-based head-to-tail amphiphiles as effective iono- and protonophores. Tetrahedron, 2005, 61, 10689-10698.	1.9	10
59	Calix[4]arene-cholic acid conjugates: a new class of efficient synthetic ionophores. Chemical Communications, 2005, , 1354.	4.1	52
60	Synthesis of potentially anti-inflammatory IPL576,092-contignasterol and IPL576,092-manoalide hybrids. Tetrahedron, 2004, 60, 5587-5593.	1.9	11
61	Asymmetric synthesis of N,O-diprotected (2S,3S)-N-methyl-δ-hydroxyisoleucine, noncoded amino acid of halipeptin A. Tetrahedron: Asymmetry, 2004, 15, 1181-1186.	1.8	31
62	Studies towards the total synthesis of contignasterol. Tetrahedron, 2004, 60, 5577-5586.	1.9	6
63	Asymmetric synthesis of (3S,4R,7S)-(â^')-3-hydroxy-7-methoxy-2,2,4-trimethyl-decanoic acid, a plausible polyketide fragment of halipeptin A. Tetrahedron: Asymmetry, 2003, 14, 3371-3378.	1.8	18
64	C2-symmetrical sterol–polyether conjugates as highly efficient synthetic ionophores. Tetrahedron Letters, 2003, 44, 6121-6124.	1.4	13
65	Synthesis of a transmembrane ionophore based on a C2-symmetric polyhydroxysteroid derivative. Tetrahedron, 2003, 59, 1711-1717.	1.9	21
66	An artificial ionophore based on a polyhydroxylated steroid dimer. Chemical Communications, 2002, , 3066-3067.	4.1	20
67	Structural revision of halipeptins: synthesis of the thiazoline unit and isolation of halipeptin C. Tetrahedron Letters, 2002, 43, 5707-5710.	1.4	51
68	Excited state intramolecular proton transfer in free base hemiporphyrazine. Chemical Physics Letters, 2002, 354, 160-164.	2.6	12
69	Formation of Quaternary Carbon Centers in Ethylene Polymerization with meso-Isopropylidenebis(1-indenyl)zirconium Dichloride Activated by MAO. Macromolecules, 2001, 34, 2-4.	4.8	22
70	Stereocontrolled synthesis of contignasterol's side chain. Tetrahedron Letters, 2001, 42, 8977-8980.	1.4	11
71	Xanthones and flavonoids from Leiothrix curvifolia and Leiothrix flavescens. Phytochemistry, 2001, 56, 853-856.	2.9	22
72	Enantioselective synthesis of a trans -ethenyl-hydrindene, a useful steroid CD-ring diene precursor. Tetrahedron Letters, 2001, 42, 1155-1157.	1.4	7

#	Article	IF	CITATIONS
73	A synthetic approach towards stoloniferones: synthesis of 11-acetyl-24-desmethyl-stoloniferone C. Tetrahedron Letters, 2001, 42, 1575-1577.	1.4	9
74	First enantioselective non-biological synthesis of asymmetrised tris(hydroxymethyl)methane (THYM*) and bis(hydroxymethyl)acetaldehyde (BHYMA*). Tetrahedron Letters, 2001, 42, 5421-5424.	1.4	15
75	Alfalfa (Medicago sativaL.) Flavonoids. 1. Apigenin and Luteolin Glycosides from Aerial Parts. Journal of Agricultural and Food Chemistry, 2001, 49, 753-758.	5.2	115
76	Studies Towards the Synthesis of Aplykurodins - Synthesis of 17,18-Dihydro-3,9-di-epi-aplykurodinone B. European Journal of Organic Chemistry, 2000, 2000, 439-448.	2.4	8
77	Novel Syntheses of (E)- and (Z)-Volkendousin, Cytotoxic Steroids from the Plant Melia volkensii. European Journal of Organic Chemistry, 2000, 2000, 3247-3252.	2.4	8
78	Synthesis of alkylphenols and alkylcatechols from the marine mollusc Haminoea callidegenita. Tetrahedron Letters, 2000, 41, 3975-3978.	1.4	22
79	Chemical Synthesis of Cross-Linked Purine Nucleosides. Organic Letters, 2000, 2, 293-295.	4.6	51
80	Efficient Stereocontrolled Access to 15- and 16-Hydroxy Steroids. European Journal of Organic Chemistry, 1999, 1999, 3505-3510.	2.4	18
81	A General Method for the Synthesis of theN2- andN6- Carcinogenic Amine Adducts of 2â€~-Deoxyguanosine and 2â€~-Deoxyadenosine1. Journal of the American Chemical Society, 1999, 121, 10453-10460.	13.7	57
82	Design and Synthesis of Estrarubicin: a Novel Class of Estrogen-Anthracenedione Hybrids. European Journal of Organic Chemistry, 1998, 1998, 1965-1970.	2.4	23
83	Synthesis of calicoferol E and astrogorgiadiol, two marine 9,10-secosteroids. Tetrahedron Letters, 1998, 39, 4741-4744.	1.4	13
84	Synthesis of (25R)-5α-Cholestane-3β,6β,15α,16β,26-pentol, a Cytostatic Starfish Steroid. Journal of Organic Chemistry, 1998, 63, 4438-4443.	3.2	21
85	Synthesis and cytotoxic activity of steroid-anthraquinone hybrids. Tetrahedron, 1997, 53, 10871-10882.	1.9	39
86	Synthesis of unusual cholestane analogs by Diels-Alder reaction (A+CD → ABCD). Tetrahedron Letters, 1997, 38, 2155-2158.	1.4	8
87	Two Novel Polyhydroxysteroids with a 24-Ethyl-25-hydroxy-26-sulfoxy Side Chain from the Deep Water StarfishStyracaster caroli. Journal of Natural Products, 1996, 59, 386-390.	3.0	6
88	Synthesis of incrustasterols, two cytotoxic polyoxygenated sponge steroids. Tetrahedron Letters, 1996, 37, 4775-4776.	1.4	10
89	Synthesis of (17R)-17-methylincisterol, a highly degraded marine steroid. Tetrahedron Letters, 1995, 36, 4303-4306.	1.4	31
90	Studies towards the synthesis of esperamicinone. Tetrahedron, 1994, 50, 11391-11426.	1.9	43

#	Article	IF	CITATIONS
91	Polyoxygenated Marine Steroids from the Deep Water Starfish Styracaster caroli. Journal of Natural Products, 1994, 57, 1361-1373.	3.0	18
92	A novel group of polyhydroxycholanic acid derivatives from the deep water starfish Styracaster caroli. Tetrahedron Letters, 1993, 34, 4381-4384.	1.4	24
93	The first occurrence of polyhydroxylated steroids with phosphate conjugation from the starfish tremaster novaecaledoniae. Tetrahedron Letters, 1992, 33, 1097-1100.	1.4	24
94	Sterol composition of the "living fossil―crinoid Gymnocrinus richeri. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 100, 647-651.	0.2	4