
Jean-Jacques Kiladjian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6281856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting Diagnostic performances of serum erythropoÃ ⁻ etin level and <i>JAK2</i> mutation for polycythemias: analysis of a cohort of 1090 patients with red cell mass measurement. British Journal of Haematology, 2022, 196, 676-680.	1.2	3
2	Favorable overall survival with imetelstat in relapsed/refractory myelofibrosis patients compared with real-world data. Annals of Hematology, 2022, 101, 139-146.	0.8	17
3	Single-cell analysis reveals selection of <i>TP53</i> -mutated clones after MDM2 inhibition. Blood Advances, 2022, 6, 2813-2823.	2.5	7
4	A randomized phase 3 trial of interferon-α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood, 2022, 139, 2931-2941.	0.6	45
5	Long-term outcomes of polycythemia vera patients treated with ropeginterferon Alfa-2b. Leukemia, 2022, 36, 1408-1411.	3.3	37
6	An inherited gainâ€ofâ€function risk allele in <scp><i>EPOR</i></scp> predisposes to familial <scp><i>JAK2</i>^{V617F}</scp> myeloproliferative neoplasms. British Journal of Haematology, 2022, 198, 131-136.	1.2	6
7	Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematology,the, 2022, 9, e301-e311.	2.2	46
8	Perspective: Pivotal translational hematology and therapeutic insights in chronic myeloid hematopoietic stem cell malignancies. Hematological Oncology, 2022, 40, 491-504.	0.8	0
9	Altered Ca2+ Homeostasis in Red Blood Cells of Polycythemia Vera Patients Following Disturbed Organelle Sorting during Terminal Erythropoiesis. Cells, 2022, 11, 49.	1.8	6
10	Imetelstat in intermediate-2 or high-risk myelofibrosis refractory to JAK inhibitor: IMpactMF phase III study design. Future Oncology, 2022, 18, 2393-2402.	1.1	14
11	CCND2 mutations are infrequent events in BCR-ABL1 negative myeloproliferative neoplasm patients. Haematologica, 2021, 106, 863-864.	1.7	5
12	Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia, 2021, 35, 1-17.	3.3	116
13	Long-term follow-up of JAK2 exon 12 polycythemia vera: a French Intergroup of Myeloproliferative Neoplasms (FIM) study. Leukemia, 2021, 35, 871-875.	3.3	10
14	Benefits of molecular profiling with next-generation sequencing for the diagnosis and prognosis of myeloproliferative neoplasms in splanchnic vein thrombosis. Journal of Hepatology, 2021, 74, 251-252.	1.8	5
15	Recent Advancements in Hematology: Knowledge, Methods and Dissemination, Part 2. Hemato, 2021, 2, 79-88.	0.2	0
16	ABCG2 Is Overexpressed on Red Blood Cells in Ph-Negative Myeloproliferative Neoplasms and Potentiates Ruxolitinib-Induced Apoptosis. International Journal of Molecular Sciences, 2021, 22, 3530.	1.8	3
17	MOMENTUM: momelotinib vs danazol in patients with myelofibrosis previously treated with JAKi who are symptomatic and anemic. Future Oncology, 2021, 17, 1449-1458.	1.1	31
18	Impact of NFE2 mutations on AML transformation andÂoverall survival in patients with myeloproliferative neoplasms. Blood, 2021, 138, 2142-2148.	0.6	23

JEAN-JACQUES KILADJIAN

#	Article	IF	CITATIONS
19	<code>PPAR\hat{I}^3</code> agonists promote the resolution of myelofibrosis in preclinical models. Journal of Clinical Investigation, 2021, 131, .	3.9	4
20	Efficacy and tolerability of Janus kinase inhibitors in myelofibrosis: a systematic review and network meta-analysis. Blood Cancer Journal, 2021, 11, 135.	2.8	19
21	Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Blood, 2021, 138, 2231-2243.	0.6	25
22	Randomized, Single-Blind, Multicenter Phase II Study of Two Doses of Imetelstat in Relapsed or Refractory Myelofibrosis. Journal of Clinical Oncology, 2021, 39, 2881-2892.	0.8	59
23	Unmet clinical needs in the management of CALR-mutated essential thrombocythaemia: a consensus-based proposal from the European LeukemiaNet. Lancet Haematology,the, 2021, 8, e658-e665.	2.2	17
24	JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. Journal of Experimental Medicine, 2021, 218, .	4.2	22
25	Myeloproliferative Neoplasms (MPN) Clonal Evolution Landscape and Its Impact on Patients' Prognosis. Blood, 2021, 138, 317-317.	0.6	3
26	Chronic Exposure to Cytoreductive Treatment Shapes Clonal Evolution in Myeloproliferative Neoplasms. Blood, 2021, 138, 3620-3620.	0.6	1
27	The challenge of targets and drug discovery using large-scale screening approaches in onco-hematology. Therapie, 2021, , .	0.6	Ο
28	Hemato-oncopharmacology: Drugs and cancer. Therapie, 2021, , .	0.6	0
29	Impact of bone marrow fibrosis grade in postâ€polycythemia vera and postâ€essential thrombocythemia myelofibrosis: A study of the MYSEC group. American Journal of Hematology, 2020, 95, E1-E3.	2.0	8
30	A First-in-Human Phase I Study of INVAC-1, an Optimized Human Telomerase DNA Vaccine in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2020, 26, 588-597.	3.2	42
31	Risk factors for vascular liver diseases. Clinics and Research in Hepatology and Gastroenterology, 2020, 44, 410-419.	0.7	4
32	From leeches to interferon: should cytoreduction be prescribed for all patients with polycythemia vera?. Leukemia, 2020, 34, 2837-2839.	3.3	7
33	Molecular profiling and risk classification of patients with myeloproliferative neoplasms and splanchnic vein thromboses. Blood Advances, 2020, 4, 3708-3715.	2.5	31
34	Transient expansion of TP53 mutated clones in polycythemia vera patients treated with idasanutlin. Blood Advances, 2020, 4, 5735-5744.	2.5	21
35	Long-term efficacy and safety of ruxolitinib in polycythaemia vera – Authors' reply. Lancet Haematology,the, 2020, 7, e506.	2.2	0
36	Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: An updated analysis of the <scp>JAKARTA2</scp> study using stringent criteria for ruxolitinib failure. American Journal of Hematology, 2020, 95, 594-603.	2.0	96

#	Article	IF	CITATIONS
37	Pitfalls in CALR exon 9 mutation detection: A singleâ€center experience in 571 positive patients. International Journal of Laboratory Hematology, 2020, 42, 827-832.	0.7	8
38	Thrombocytapheresis and sequential chemotherapy for extreme symptomatic thrombocytosis secondary to myelofibrosis: a case report. Annals of Hematology, 2020, 99, 897-898.	0.8	1
39	Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study. Lancet Haematology,the, 2020, 7, e226-e237.	2.2	93
40	Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and) Tj ETQq0 0 0 rgBT /Ove Haematology,the, 2020, 7, e196-e208.	rlock 10 T 2.2	f 50 627 Td (199
41	Should Transplantation Still Be Considered for Ph1-Negative Myeloproliferative Neoplasms in Transformation?. Biology of Blood and Marrow Transplantation, 2020, 26, 1160-1170.	2.0	9
42	The BET Inhibitor, CPI-0610, Promotes Myeloid Differentiation in Myelofibrosis Patient Bone Marrow and Peripheral CD34+ Hematopoietic Stem Cells. Blood, 2020, 136, 37-38.	0.6	2
43	Potential Disease-Modifying Activity of Imetelstat Demonstrated By Reduction in Cytogenetically Abnormal Clones and Mutation Burden Leads to Clinical Benefits in Relapsed/Refractory Myelofibrosis Patients. Blood, 2020, 136, 39-40.	0.6	9
44	Impact of COVID19 Pandemic on an International MPN Patient Population: Survey Results from 1560 MPN Patients. Blood, 2020, 136, 1-3.	0.6	1
45	Interferon-Alpha (IFN) Therapy Discontinuation Is Feasible in Myeloproliferative Neoplasm (MPN) Patients with Complete Hematological Remission. Blood, 2020, 136, 35-36.	0.6	16
46	Ropeginterferon Alfaâ€2b: Efficacy and Safety in Different Age Groups. HemaSphere, 2020, 4, e485.	1.2	7
47	<i>SF3B1</i> mutations in the Driver Clone Increase the Risk of Evolution to Myelofibrosis in Patients with Myeloproliferative Neoplasms (MPN). Blood, 2020, 136, 1-1.	0.6	4
48	Adore: A Randomized, Open-Label, Phase 1/2 Open-Platform Study Evaluating Safety and Efficacy of Novel Ruxolitinib Combinations in Patients with Myelofibrosis. Blood, 2020, 136, 52-53.	0.6	2
49	Treatment with Imetelstat Improves Myelofibrosis-Related Symptoms and Other Patient-Reported Outcomes in Patients with Relapsed or Refractory Higher-Risk Myelofibrosis. Blood, 2020, 136, 45-46.	0.6	21
50	Safety and efficacy findings from the open-label, multicenter, phase 3b, expanded treatment protocol study of ruxolitinib for treatment of patients with polycythemia vera who are resistant/intolerant to hydroxyurea and for whom no alternative treatments are available. Leukemia and Lymphoma, 2019, 60, 3493-3502.	0.6	5
51	Emerging translational science discoveries, clonal approaches, and treatment trends in chronic myeloproliferative neoplasms. Hematological Oncology, 2019, 37, 240-252.	0.8	8
52	Thromboembolic events in polycythemia vera. Annals of Hematology, 2019, 98, 1071-1082.	0.8	63
53	Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood, 2019, 133, 790-794.	0.6	75
54	Next-generation sequencing for JAK2 mutation testing: advantages and pitfalls. Annals of Hematology, 2019, 98, 111-118.	0.8	16

#	Article	IF	CITATIONS
55	Thromboembolic Risk Reduction and High Rate of Complete Molecular Response with Long-Term Use of Ropeginterferon Alpha-2b in Polycythemia Vera: Results from a Randomized Controlled Study. Blood, 2019, 134, 553-553.	0.6	4
56	FREEDOM: A phase 3b efficacy and safety study of fedratinib in intermediate- or high-risk myelofibrosis patients previously treated with ruxolitinib Journal of Clinical Oncology, 2019, 37, TPS7072-TPS7072.	0.8	4
57	Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia, 2018, 32, 1057-1069.	3.3	415
58	Efficacy and safety of ruxolitinib after and versus interferon use in the RESPONSE studies. Annals of Hematology, 2018, 97, 617-627.	0.8	23
59	Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematology,the, 2018, 5, e73-e81.	2.2	211
60	Benefits and pitfalls of pegylated interferon-α2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French Intergroup of Myeloproliferative neoplasms (FIM) study. Haematologica, 2018, 103, 438-446.	1.7	50
61	Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo. Blood Cancer Journal, 2018, 8, 94.	2.8	34
62	Leukemic transformation and second cancers in 3649 patients with high-risk essential thrombocythemia in the EXELS study. Leukemia Research, 2018, 74, 105-109.	0.4	13
63	Evidence for Superior Efficacy and Disease Modification after Three Years of Prospective Randomized Controlled Treatment of Polycythemia Vera Patients with Ropeginterferon Alfa-2b Vs. HU/BAT. Blood, 2018, 132, 579-579.	0.6	16
64	Long-term treatment with interferon alfa for myeloproliferative neoplasms. Lancet Haematology,the, 2017, 4, e150-e151.	2.2	7
65	Selective testing for calreticulin gene mutations in patients with splanchnic vein thrombosis: A prospective cohort study. Journal of Hepatology, 2017, 67, 501-507.	1.8	50
66	Ruxolitinib reduces JAK2 p.V617F allele burden in patients with polycythemia vera enrolled in the RESPONSE study. Annals of Hematology, 2017, 96, 1113-1120.	0.8	68
67	Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematology,the, 2017, 4, e317-e324.	2.2	243
68	Enhanced calreticulin expression in red cells of polycythemia vera patients harboring the <i>JAK2</i> ^{V617F} mutation. Haematologica, 2017, 102, e241-e244.	1.7	10
69	Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematology,the, 2017, 4, e225-e236.	2.2	224
70	Actualités thérapeutiques dans les néoplasies myéloprolifératives non LMC. Revue Francophone Des Laboratoires, 2017, 2017, 59-62.	0.0	0
71	Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. Journal of Hematology and Oncology, 2017, 10, 156.	6.9	210
72	SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor–NaA⁻ve Patients With Myelofibrosis. Journal of Clinical Oncology, 2017, 35, 3844-3850.	0.8	243

#	Article	IF	CITATIONS
73	Phase 3 trial of momelotinib (MMB) vs ruxolitinib (RUX) in JAK inhibitor (JAKi) naive patients with myelofibrosis (MF) Journal of Clinical Oncology, 2017, 35, 7000-7000.	0.8	4
74	Phase 3 randomized trial of momelotinib (MMB) versus best available therapy (BAT) in patients with myelofibrosis (MF) previously treated with ruxolitinib (RUX) Journal of Clinical Oncology, 2017, 35, 7001-7001.	0.8	14
75	Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial. Haematologica, 2016, 101, 821-829.	1.7	140
76	Combination therapy with ruxolitinib plus intensive treatment strategy is feasible in patients with blastâ€phase myeloproliferative neoplasms. British Journal of Haematology, 2016, 172, 628-630.	1.2	16
77	Symptomatic Profiles of Patients With Polycythemia Vera: Implications of Inadequately Controlled Disease. Journal of Clinical Oncology, 2016, 34, 151-159.	0.8	56
78	Impact on MPN Symptoms and Quality of Life of Front Line Pegylated Interferon Alpha-2a Vs. Hydroxyurea in High Risk Polycythemia Vera and Essential Thrombocythemia: Interim Analysis Results of Myeloproliferative Disorders Research Consortium (MPD-RC) 112 Global Phase III Trial. Blood, 2016, 128, 4271-4271.	0.6	5
79	Final Results from PROUD-PV a Randomized Controlled Phase 3 Trial Comparing Ropeginterferon Alfa-2b to Hydroxyurea in Polycythemia Vera Patients. Blood, 2016, 128, 475-475.	0.6	24
80	Interim Analysis of the Myeloproliferative Disorders Research Consortium (MPD-RC) 112 Global Phase III Trial of Front Line Pegylated Interferon Alpha-2a Vs. Hydroxyurea in High Risk Polycythemia Vera and Essential Thrombocythemia. Blood, 2016, 128, 479-479.	0.6	32
81	Clinical and molecular response to interferon- $\hat{l}\pm$ therapy in essential thrombocythemia patients with CALR mutations. Blood, 2015, 126, 2585-2591.	0.6	127
82	A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica, 2015, 100, 1139-1145.	1.7	203
83	Interferon Alfa Therapy in <i>CALR</i> -Mutated Essential Thrombocythemia. New England Journal of Medicine, 2014, 371, 188-189.	13.9	67
84	Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood, 2013, 122, 4047-4053.	0.6	383
85	Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Review of Hematology, 2013, 6, 49-58.	1.0	96
86	Efficacy and safety of pegylatedâ€interferon αâ€2a in myelofibrosis: a study by the <scp>FIM</scp> and <scp>GEM</scp> French cooperative groups. British Journal of Haematology, 2013, 162, 783-791.	1.2	67
87	Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood, 2013, 121, 4778-4781.	0.6	219
88	Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood, 2012, 120, 4921-4928.	0.6	303
89	Myeloproliferative Neoplasm (MPN) Symptom Assessment Form Total Symptom Score: Prospective International Assessment of an Abbreviated Symptom Burden Scoring System Among Patients With MPNs. Journal of Clinical Oncology, 2012, 30, 4098-4103.	0.8	344
90	JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis. New England Journal of Medicine. 2012. 366. 787-798.	13.9	1,543

JEAN-JACQUES KILADJIAN

#	Article	IF	CITATIONS
91	Coexistence of a myeloproliferative disorder and secondary polycythemia in the same patient. American Journal of Hematology, 2012, 87, 646-646.	2.0	1
92	The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood, 2011, 117, 4706-4715.	0.6	176
93	Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood, 2011, 117, 2813-2816.	0.6	190
94	Philadelphia-Negative Classical Myeloproliferative Neoplasms: Critical Concepts and Management Recommendations From European LeukemiaNet. Journal of Clinical Oncology, 2011, 29, 761-770.	0.8	724
95	Treatment of Polycythemia Vera With Hydroxyurea and Pipobroman: Final Results of a Randomized Trial Initiated in 1980. Journal of Clinical Oncology, 2011, 29, 3907-3913.	0.8	223
96	Interlaboratory Development and Validation of a HRM Method Applied to the Detection of JAK2 Exon 12 Mutations in Polycythemia Vera Patients. PLoS ONE, 2010, 5, e8893.	1.1	27
97	Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood, 2009, 113, 4829-4833.	0.6	229
98	PEGâ€IFNâ€Î±â€2a therapy in patients with myelofibrosis. British Journal of Haematology, 2009, 146, 223-225.	1.2	64
99	Mutations in exon 12 of <i>JAK2</i> are mainly found in JAK2 V617Fâ€negative polycythaemia vera patients. British Journal of Haematology, 2008, 142, 676-679.	1.2	24
100	The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood, 2008, 111, 4922-4929.	0.6	319
101	Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood, 2008, 112, 3065-3072.	0.6	511
102	High molecular response rate of polycythemia vera patients treated with pegylated interferon Â-2a. Blood, 2006, 108, 2037-2040.	0.6	240