
Manrico Fabretto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6281731/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Effect of vinylene carbonate electrolyte additive and battery cycling protocol on the electrochemical and cyclability performance of silicon thin-film anodes. Journal of Energy Storage, 2022, 46, 103868.	8.1	6
2	Binary silicon-based thin-film anodes for lithium-ion batteries: A review. Journal of Power Sources, 2022, 520, 230871.	7.8	9
3	Doped and reactive silicon thin film anodes for lithium ion batteries: A review. Journal of Power Sources, 2021, 506, 230194.	7.8	40
4	Physical Vapor Deposition Cluster Arrival Energy Enhances the Electrochemical Performance of Silicon Thin-Film Anodes for Li-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 12243-12256.	5.1	3
5	Compressively Stressed Silicon Nanoclusters as an Antifracture Mechanism for High-Performance Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 39195-39204.	8.0	11
6	Pure silicon thin-film anodes for lithium-ion batteries: A review. Journal of Power Sources, 2019, 414, 48-67.	7.8	147
7	Influence of Postsynthesis Heat Treatment on Vapor-Phase-Polymerized Conductive Polymers. ACS Omega, 2018, 3, 12679-12687.	3.5	9
8	Insights into the Oxidant/Polymer Interfacial Growth of Vapor Phase Polymerized PEDOT Thin Films. Advanced Materials Interfaces, 2018, 5, 1800594.	3.7	16
9	Recent advances in the synthesis of conducting polymers from the vapour phase. Progress in Materials Science, 2017, 86, 127-146.	32.8	115
10	The effect of block copolymer additives for a highly active polymeric metal-free oxygen reduction electrode. RSC Advances, 2016, 6, 28809-28814.	3.6	9
11	Organic energy devices from ionic liquids and conducting polymers. Journal of Materials Chemistry C, 2016, 4, 1550-1556.	5.5	15
12	Diffuse color patterning using blended electrochromic polymers for proofâ€ofâ€concept adaptive camouflage plaques. Journal of Applied Polymer Science, 2015, 132, .	2.6	19
13	Market evaluation, performance modelling and materials solution addressing short wavelength discomfort glare in rear view automotive mirrors. Translational Materials Research, 2015, 2, 035002.	1.2	6
14	Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications. Smart Materials and Structures, 2015, 24, 035016.	3.5	24
15	Flexible Polymer-on-Polymer Architecture for Piezo/Pyroelectric Energy Harvesting. ACS Applied Materials & Interfaces, 2015, 7, 8465-8471.	8.0	41
16	Optical coatings for automotive applications: a case study in translating fundamental materials science into commercial reality. Translational Materials Research, 2014, 1, 025001.	1.2	4
17	Semi-metallic polymers. Nature Materials, 2014, 13, 190-194.	27.5	722
18	Enhancing the morphology and electrochromic stability of polypyrrole via PEG–PPG–PEG templating in vapour phase polymerisation. European Polymer Journal, 2014, 51, 28-36.	5.4	18

MANRICO FABRETTO

#	Article	IF	CITATIONS
19	Condensation and freezing of droplets on superhydrophobic surfaces. Advances in Colloid and Interface Science, 2014, 210, 47-57.	14.7	223
20	Metal-free oxygen reduction electrodes based on thin PEDOT films with high electrocatalytic activity. RSC Advances, 2014, 4, 9819.	3.6	34
21	Evidence for â€`bottom up' growth during vapor phase polymerization of conducting polymers. Polymer, 2014, 55, 3458-3460.	3.8	32
22	Vapor Phase Synthesis of Conducting Polymer Nanocomposites Incorporating 2D Nanoparticles. Chemistry of Materials, 2014, 26, 4207-4213.	6.7	26
23	Using oxygen plasma treatment to improve the performance of electrodes for capacitive water deionization. Electrochimica Acta, 2013, 106, 494-499.	5.2	31
24	Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation. Biomaterials Science, 2013, 1, 368-378.	5.4	31
25	Extending the Utility of Conducting Polymers through Chemisorption of Nucleophiles. Chemistry of Materials, 2013, 25, 1837-1841.	6.7	18
26	Inkjet printing and vapor phase polymerization: patterned conductive PEDOT for electronic applications. Journal of Materials Chemistry C, 2013, 1, 3353.	5.5	56
27	Ultrathin Polymer Films for Transparent Electrode Applications Prepared by Controlled Nucleation. ACS Applied Materials & Interfaces, 2013, 5, 11654-11660.	8.0	43
28	Structure-directed growth of high conductivity PEDOT from liquid-like oxidant layers during vacuum vapor phase polymerization. Journal of Materials Chemistry, 2012, 22, 14889.	6.7	84
29	Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices. Chemistry of Materials, 2012, 24, 3998-4003.	6.7	224
30	Vacuum vapour phase polymerization of high conductivity PEDOT: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant. Polymer, 2012, 53, 2146-2151.	3.8	88
31	Measurement Protocols for Reporting PEDOT Thin Film Conductivity and Optical Transmission: A Critical Survey. Macromolecular Chemistry and Physics, 2011, 212, 2173-2180.	2.2	26
32	Gel electrolytes with ionic liquid plasticiser for electrochromic devices. Electrochimica Acta, 2011, 56, 4408-4413.	5.2	33
33	High conductivity PEDOT resulting from glycol/oxidant complex and glycol/polymer intercalation during vacuum vapour phase polymerisation. Polymer, 2011, 52, 1725-1730.	3.8	73
34	Vacuum vapour phase polymerised poly(3,4-ethyelendioxythiophene) thin films for use in large-scale electrochromic devices. Thin Solid Films, 2011, 519, 2544-2549.	1.8	47
35	In-situ QCM-D analysis reveals four distinct stages during vapour phase polymerisation of PEDOT thin films. Polymer, 2010, 51, 1737-1743.	3.8	34
36	Influence of PEGâ€ <i>ran</i> â€PPG Surfactant on Vapour Phase Polymerised PEDOT Thin Films. Macromolecular Rapid Communications, 2009, 30, 1846-1851.	3.9	51

MANRICO FABRETTO

#	Article	IF	CITATIONS
37	The role of water in the synthesis and performance of vapour phase polymerised PEDOT electrochromic devices. Journal of Materials Chemistry, 2009, 19, 7871.	6.7	95
38	The mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic) acid using linear-diol additives: Its effect on electrochromic performance. Thin Solid Films, 2008, 516, 7828-7835.	1.8	29
39	High Conductivity PEDOT Using Humidity Facilitated Vacuum Vapour Phase Polymerisation. Macromolecular Rapid Communications, 2008, 29, 1403-1409.	3.9	72
40	Improved PEDOT Conductivity via Suppression of Crystallite Formation in Fe(III) Tosylate During Vapor Phase Polymerization. Macromolecular Rapid Communications, 2008, 29, 1503-1508.	3.9	82
41	Faradaic charge corrected colouration efficiency measurements for electrochromic devices. Electrochimica Acta, 2008, 53, 2250-2257.	5.2	18
42	Colouration efficiency measurements in electrochromic polymers: The importance of charge density. Electrochemistry Communications, 2007, 9, 2032-2036.	4.7	34
43	WETTABILITY AND SURFACE ENERGETICS OF ROUGH FLUOROPOLYMER SURFACES. Journal of Adhesion, 2004, 80, 497-520.	3.0	31
44	Contact angle measurements using the Wilhelmy balance for asymmetrically treated samples. Journal of Adhesion Science and Technology, 2004, 18, 29-37.	2.6	5