Mainassara A Zaman-Allah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6281399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agricultural Water Management, 2021, 245, 106565.	2.4	32
2	Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theoretical and Applied Genetics, 2021, 134, 1729-1752.	1.8	92
3	Low-N stress tolerant maize hybrids have higher fertilizer N recovery efficiency and reduced N-dilution in the grain compared to susceptible hybrids under low N conditions. Plant Production Science, 2020, 23, 417-426.	0.9	9
4	Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe. Scientific Reports, 2020, 10, 16008.	1.6	5
5	Maize Kernel Abortion Recognition and Classification Using Binary Classification Machine Learning Algorithms and Deep Convolutional Neural Networks. Al, 2020, 1, 361-375.	2.1	4
6	Transpiration difference under high evaporative demand in chickpea (<i>Cicer arietinum</i> L.) may be explained by differences in the water transport pathway in the root cylinder. Plant Biology, 2020, 22, 769-780.	1.8	10
7	Nitrogen rate impacts on tropical maize nitrogen use efficiency and soil nitrogen depletion in eastern and southern Africa. Nutrient Cycling in Agroecosystems, 2020, 116, 397-408.	1.1	26
8	Increasing Genetic Gains in Maize in Stress-Prone Environments of the Tropics. , 2020, , 97-132.		6
9	Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Crop Protection, 2019, 120, 141-150.	1.0	170
10	Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques. Sensors, 2019, 19, 1815.	2.1	54
11	Phenotyping: New Crop Breeding Frontier. , 2019, , 493-503.		0
12	Identification of donors for low-nitrogen stress with maize lethal necrosis (MLN) tolerance for maize breeding in sub-Saharan Africa. Euphytica, 2019, 215, 80.	0.6	24
13	Translating High-Throughput Phenotyping into Genetic Gain. Trends in Plant Science, 2018, 23, 451-466.	4.3	525
14	Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Climate Risk Management, 2018, 19, 106-119.	1.6	68
15	When the going gets tough: Performance of stress tolerant maize during the 2015/16 (El Niño) and 2016/17 (La NiA±a) season in southern Africa. Agriculture, Ecosystems and Environment, 2018, 268, 79-89.	2.5	20
16	High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Plant Methods, 2018, 14, 49.	1.9	37
17	Evaluating the Performance of Different Commercial and Pre-Commercial Maize Varieties under Low Nitrogen Conditions Using Affordable Phenotyping Tools. Proceedings (mdpi), 2018, 2, .	0.2	2
18	High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging. Remote Sensing, 2018, 10, 330.	1.8	96

#	Article	IF	CITATIONS
19	Phenotyping: New Crop Breeding Frontier. , 2018, , 1-11.		3
20	Chickpea. SpringerBriefs in Environmental Science, 2017, , 35-45.	0.3	2
21	Gains in Maize Genetic Improvement in Eastern and Southern Africa: I. CIMMYT Hybrid Breeding Pipeline. Crop Science, 2017, 57, 168-179.	0.8	94
22	Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization. Frontiers in Plant Science, 2017, 8, 2004.	1.7	80
23	Genetic Diversity among Selected Elite CIMMYT Maize Hybrids in East and Southern Africa. Crop Science, 2017, 57, 2395-2404.	0.8	10
24	Gains in Maize Genetic Improvement in Eastern and Southern Africa: II. CIMMYT Openâ€₽ollinated Variety Breeding Pipeline. Crop Science, 2017, 57, 180-191.	0.8	63
25	A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Frontiers in Plant Science, 2016, 7, 666.	1.7	98
26	Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Functional Plant Biology, 2015, 42, 162.	1.1	54
27	Evaluation of agro-morphological diversity of groundnut (Arachis hypogaea L.) in Niger. African Journal of Agricultural Research Vol Pp, 2015, 10, 334-344.	0.2	8
28	Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes. International Journal of Molecular Sciences, 2015, 16, 18976-19008.	1.8	37
29	Diversité agro-morphologique des accessions de fonio [<i>Digitaria exilis</i> (Kippist.) Stapf.] au Niger. International Journal of Biological and Chemical Sciences, 2015, 8, 1710.	0.1	8
30	New Technologies for Phenotyping. , 2015, , 1-14.		3
31	Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods, 2015, 11, 35.	1.9	248
32	The Legume–Rhizobia Symbiosis. Handbook of Plant Breeding, 2015, , 267-290.	0.1	9
33	Situation de référence de la phytodiversité et la productivité herbacée d'un dispositif de suivi du fe de brousse au Niger. International Journal of Biological and Chemical Sciences, 2014, 8, 1165.	2U 0.1	1
34	Genetic diversity and population structure in a collection of roselle (Hibiscus sabdariffaL.) from Niger. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, 207-214.	0.4	4
35	Restriction of transpiration rate under high vapour pressure deficit and nonâ€limiting water conditions is important for terminal drought tolerance in cowpea. Plant Biology, 2013, 15, 304-316.	1.8	60
36	A phytase gene is overexpressed in root nodules cortex of Phaseolus vulgaris–rhizobia symbiosis under phosphorus deficiency. Planta, 2013, 238, 317-324.	1.6	38

#	Article	IF	CITATIONS
37	Crop science experiments designed to inform crop modeling. Agricultural and Forest Meteorology, 2013, 170, 8-18.	1.9	78
38	Water: the most important â€~molecular' component of water stress tolerance research. Functional Plant Biology, 2013, 40, 1310.	1.1	94
39	Root Anatomical Traits and Their Possible Contribution to Drought Tolerance in Grain Legumes. Plant Production Science, 2013, 16, 1-8.	0.9	60
40	Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 2012, 125, 625-645.	1.8	397
41	Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Functional Plant Biology, 2012, 39, 306.	1.1	77
42	Root growth in Jatropha and its implications for drought adaptation. Biomass and Bioenergy, 2012, 39, 247-252.	2.9	34
43	Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 2012, 32, 31-44.	2.2	145
44	Genotypic variability for tolerance to salinity and phosphorus deficiency among N2-dependent recombinant inbred lines of Common Bean (Phaseolus vulgaris). African Journal of Microbiology Research, 2012, 6, .	0.4	2
45	A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. Journal of Experimental Botany, 2011, 62, 4239-4252.	2.4	202
46	Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Functional Plant Biology, 2011, 38, 270.	1.1	161
47	Nodular diagnosis for ecological engineering of the symbiotic nitrogen fixation with legumes. Procedia Environmental Sciences, 2011, 9, 40-46.	1.3	119
48	The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biology, 2011, 11, 31.	1.6	103
49	Elevated CO2 concentration around alfalfa nodules increases N2 fixation. Journal of Experimental Botany, 2010, 61, 121-130.	2.4	44
50	RHIZOBIAL INOCULATION AND P FERTILIZATION RESPONSE IN COMMON BEAN (PHASEOLUS VULGARIS) UNDER GLASSHOUSE AND FIELD CONDITIONS. Experimental Agriculture, 2007, 43, 67-77.	0.4	20
51	Effect of salinity on root-nodule conductance to the oxygen diffusion in the Cicer arietinum–Mesorhizobium ciceri symbiosis. Journal of Plant Physiology, 2007, 164, 1028-1036.	1.6	34
52	Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia. Canadian Journal of Microbiology, 2007, 53, 427-434.	0.8	23
53	Clipping Effects on the Growth Variation, Water Use Efficiency and Photosynthetic Activity in Buffel Grass (Cenchrus ciliaris L.) Poaceae. Asian Journal of Plant Sciences, 2007, 7, 95-99.	0.2	1

54 Plant Biomass Productivity Under Abiotic Stresses in SAT Agriculture. , 0, , .

7