List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6280627/publications.pdf Version: 2024-02-01

IFAN BLOUIN

#	Article	IF	CITATIONS
1	Target and hand position information in the online control of goal-directed arm movements. Experimental Brain Research, 2003, 151, 524-535.	1.5	156
2	Internally driven control of reaching movements: A study on a proprioceptively deafferented subject. Brain Research Bulletin, 2006, 69, 404-415.	3.0	101
3	Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis. BMC Neuroscience, 2006, 7, 68.	1.9	82
4	Online control of the direction of rapid reaching movements. Experimental Brain Research, 2004, 157, 468-71.	1.5	74
5	Direct Evidence for Cortical Suppression of Somatosensory Afferents during Visuomotor Adaptation. Cerebral Cortex, 2009, 19, 2106-2113.	2.9	66
6	Galvanic vestibular stimulation in humans produces online arm movement deviations when reaching towards memorized visual targets. Neuroscience Letters, 2002, 318, 34-38.	2.1	60
7	Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients. BMC Neuroscience, 2009, 10, 102.	1.9	54
8	Role of sensory information in updating internal models of the effector during arm tracking. Progress in Brain Research, 2003, 142, 203-222.	1.4	48
9	Effect of gravity-like torque on goal-directed arm movements in microgravity. Journal of Neurophysiology, 2012, 107, 2541-2548.	1.8	43
10	Updating visual space during passive and voluntary head-in-space movements. Experimental Brain Research, 1998, 122, 93-100.	1.5	41
11	Can prepared anticipatory postural adjustments be updated by proprioception?. Neuroscience, 2008, 155, 640-648.	2.3	40
12	On the nature of the vestibular control of arm-reaching movements during whole-body rotations. Experimental Brain Research, 2005, 164, 431-441.	1.5	38
13	Failure to Update the Egocentric Representation of the Visual Space Through Labyrinthine Signal. Brain and Cognition, 1995, 29, 1-22.	1.8	37
14	Directional control of rapid arm movements: The role of the kinetic visual feedback system Canadian Journal of Experimental Psychology, 1993, 47, 678-696.	0.8	35
15	Cortical facilitation of proprioceptive inputs related to gravitational balance constraints during step preparation. Journal of Neurophysiology, 2013, 110, 397-407.	1.8	34
16	When Standing on a Moving Support, Cutaneous Inputs Provide Sufficient Information to Plan the Anticipatory Postural Adjustments for Gait Initiation. PLoS ONE, 2013, 8, e55081.	2.5	34
17	On the neural basis of sensory weighting: Alpha, beta and gamma modulations during complex movements. NeuroImage, 2017, 150, 200-212.	4.2	31
18	Encoding the position of a flashed visual target after passive body rotations. NeuroReport, 1995, 6, 1165-1168.	1.2	30

#	Article	IF	CITATIONS
19	Evidence for Distinct, Differentially Adaptable Sensorimotor Transformations for Reaches to Visual and Proprioceptive Targets. Journal of Neurophysiology, 2007, 98, 1815-1819.	1.8	30
20	Online control of anticipated postural adjustments in step initiation: Evidence from behavioral and computational approaches. Gait and Posture, 2012, 35, 616-620.	1.4	30
21	The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered. PLoS ONE, 2015, 10, e0143124.	2.5	30
22	On-Line versus Off-Line Control of Rapid Aiming Movements. Journal of Motor Behavior, 1993, 25, 275-279.	0.9	29
23	Encoding target-trunk relative position: cervical versus vestibular contribution. Experimental Brain Research, 1998, 122, 101-107.	1.5	29
24	On-line versus off-line vestibular-evoked control of goal-directed arm movements. NeuroReport, 2002, 13, 1563-1566.	1.2	29
25	Control of Rapid Arm Movements When Target Position is Altered during Saccadic Suppression. Journal of Motor Behavior, 1995, 27, 114-122.	0.9	28
26	Eye dominance influences triggering action: The Poffenberger paradigm revisited. Cortex, 2014, 58, 86-98.	2.4	28
27	Vestibular signal processing in a subject with somatosensory deafferentation: The case of sitting posture. BMC Neurology, 2007, 7, 25.	1.8	27
28	From head orientation to hand control: evidence of both neck and vestibular involvement in hand drawing. Experimental Brain Research, 2003, 150, 40-49.	1.5	26
29	Facilitation of cutaneous inputs during the planning phase of gait initiation. Journal of Neurophysiology, 2015, 114, 301-308.	1.8	26
30	The relative contribution of retinal and extraretinal signals in determining the accuracy of reaching movements in normal subjects and a deafferented patient. Experimental Brain Research, 1996, 109, 148-53.	1.5	25
31	Adaptation in Visuomanual Tracking Depends on Intact Proprioception. Journal of Motor Behavior, 1998, 30, 234-248.	0.9	25
32	Prediction of the body rotation-induced torques on the arm during reaching movements: Evidence from a proprioceptively deafferented subject. Neuropsychologia, 2011, 49, 2055-2059.	1.6	25
33	Interhemispheric Transfer Time Asymmetry of Visual Information Depends on Eye Dominance: An Electrophysiological Study. Frontiers in Neuroscience, 2018, 12, 72.	2.8	25
34	Visual signals contribute to the coding of gaze direction. Experimental Brain Research, 2002, 144, 281-292.	1.5	24
35	Visual stability with goal-directed eye and arm movements toward a target displaced during saccadic suppression. Psychological Research, 1995, 58, 169-176.	1.7	23
36	Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects. Neuroscience Letters, 2001, 301, 25-28.	2.1	22

#	Article	IF	CITATIONS
37	Coordination between postural and movement controls: effect of changes in body mass distribution on postural and focal component characteristics. Experimental Brain Research, 2007, 181, 159-171.	1.5	21
38	Spatio-temporal dynamics of reach-related neural activity for visual and somatosensory targets. NeuroImage, 2009, 47, 1767-1777.	4.2	21
39	Influence of Feedback Modality on Sensorimotor Adaptation: Contribution of Visual, Kinesthetic, and Verbal Cues. Journal of Motor Behavior, 2007, 39, 247-258.	0.9	20
40	Modulation of proprioceptive inflow when initiating a step influences postural adjustments. Experimental Brain Research, 2010, 201, 297-305.	1.5	20
41	Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets. Journal of Neurophysiology, 2014, 112, 2290-2301.	1.8	20
42	The Attentional Cost of Amplitude and Directional Requirements When Pointing to Targets. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1994, 47, 481-495.	2.3	19
43	The Role of Ocular Muscle Proprioception During Modifications in Smooth Pursuit Output. Vision Research, 1997, 37, 769-774.	1.4	19
44	Internal representation of gaze direction with and without retinal inputs in man. Neuroscience Letters, 1995, 183, 187-189.	2.1	18
45	Simultaneity of two effectors in synchronization with a periodic external signal. Human Movement Science, 1996, 15, 25-38.	1.4	18
46	Visual guidance of arm reaching: Online adjustments of movement direction are impaired by amplitude control. Journal of Vision, 2010, 10, 24-24.	0.3	18
47	Prediction in the Vestibular Control of Arm Movements. Multisensory Research, 2015, 28, 487-505.	1.1	18
48	Neural correlates for task-relevant facilitation of visual inputs during visually-guided hand movements. Neurolmage, 2015, 121, 39-50.	4.2	16
49	Asymmetry in visual information processing depends on the strength of eye dominance. Neuropsychologia, 2017, 96, 129-136.	1.6	16
50	Role of arm proprioception in calibrating the arm-eye temporal coordination. Neuroscience Letters, 1997, 237, 109-112.	2.1	15
51	The gap effect for eye and hand movements in double-step pointing. Experimental Brain Research, 2001, 138, 352-358.	1.5	15
52	Egocentric visual target position and velocity coding: Role of ocular muscle proprioception. Annals of Biomedical Engineering, 1995, 23, 423-435.	2.5	13
53	Perception of the vertical with a head-mounted visual frame during head tilt. Ergonomics, 2004, 47, 1116-1130.	2.1	13
54	Insights into the control of arm movement during body motion as revealed by EMG analyses. Brain Research, 2010, 1309, 40-52.	2.2	13

#	Article	IF	CITATIONS
55	Do Gravity-Related Sensory Information Enable the Enhancement of Cortical Proprioceptive Inputs When Planning a Step in Microgravity?. PLoS ONE, 2014, 9, e108636.	2.5	13
56	Fusion of Visuo-ocular and Vestibular Signals in Arm Motor Control. Journal of Neurophysiology, 2006, 95, 1134-1146.	1.8	12
57	Age-related decline in sensory processing for locomotion and interception. Neuroscience, 2011, 172, 366-378.	2.3	12
58	Independent Early and Late Sensory Processes for Proprioceptive Integration When Planning a Step. Cerebral Cortex, 2019, 29, 2353-2365.	2.9	11
59	Rapid online corrections for upper limb reaches to perturbed somatosensory targets: evidence for non-visual sensorimotor transformation processes. Experimental Brain Research, 2019, 237, 839-853.	1.5	11
60	Accuracy of spatial localization depending on head posture in a perturbed gravitoinertial force field. Experimental Brain Research, 2005, 161, 432-440.	1.5	10
61	Biases in the perception of self-motion during whole-body acceleration and deceleration. Frontiers in Integrative Neuroscience, 2013, 7, 90.	2.1	10
62	Perceived versus actual head-on-trunk orientation during arm movement control. Experimental Brain Research, 2006, 172, 221-229.	1.5	9
63	ls abnormal vestibulomotor responses related to idiopathic scoliosis onset or severity?. Medical Hypotheses, 2013, 80, 234-236.	1.5	9
64	Large Postural Sways Prevent Foot Tactile Information From Fading: Neurophysiological Evidence. Cerebral Cortex Communications, 2021, 2, tgaa094.	1.6	9
65	Visual Object Localization through Vestibular and Neck Inputs. 2: Updating Off-Mid-Sagittal-Plane Target Positions. Journal of Vestibular Research: Equilibrium and Orientation, 1997, 7, 137-143.	2.0	8
66	Influence of head orientation on visually and memory-guided arm movements. Acta Psychologica, 2011, 136, 390-398.	1.5	8
67	Balance control interferes with the tracing performance of a pattern with mirror-reversed vision in older persons. Age, 2014, 36, 823-837.	3.0	8
68	Controlling Reaching Movements during Self-Motion: Body-Fixed versus Earth-Fixed Targets. Motor Control, 2006, 10, 330-347.	0.6	7
69	Adaptive control: A review of the ability to acquire and maintain high sensorimotor performance. Computers in Biology and Medicine, 2007, 37, 989-1000.	7.0	6
70	Effects of underestimating the kinematics of trunk rotation on simultaneous reaching movements: predictions of a biomechanical model. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 54.	4.6	6
71	Auditory cues for somatosensory targets invoke visuomotor transformations: Behavioral and electrophysiological evidence. PLoS ONE, 2019, 14, e0215518.	2.5	5
72	Somatosensory cortical facilitation during step preparation restored by an improved body representation in obese patients. Gait and Posture, 2020, 80, 246-252.	1.4	5

#	Article	IF	CITATIONS
73	Two Neural Circuits to Point Towards Home Position After Passive Body Displacements. Frontiers in Neural Circuits, 2019, 13, 70.	2.8	3
74	Opposing Resistance to the Head Movement Does not Affect Space Perception During Head Rotations. , 1999, , 193-201.		3
75	Extending reference signal theory to rapid movements. Behavioral and Brain Sciences, 1994, 17, 315-316.	0.7	1
76	Shifts in the retinal image of a visual scene during saccades contribute to the perception of reached gaze direction in humans. Neuroscience Letters, 2004, 357, 29-32.	2.1	1
77	The Parameters of the Intended Movement Determine the Capacity to Correct the Forthcoming Movement. Motor Control, 2016, 20, 149-153.	0.6	1
78	On the Dynamics of Spatial Updating. Frontiers in Neuroscience, 2022, 16, 780027.	2.8	1
79	Keeping in touch with our hidden side. Neuroscience Letters, 2022, 782, 136693.	2.1	0