
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6280532/publications.pdf Version: 2024-02-01

FANC-LUN WANC

#	Article	IF	CITATIONS
1	Glycoproteomics Analysis of Human Liver Tissue by Combination of Multiple Enzyme Digestion and Hydrazide Chemistry. Journal of Proteome Research, 2009, 8, 651-661.	1.8	356
2	Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. Journal of Chromatography A, 2008, 1184, 369-392.	1.8	251
3	An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. Journal of Proteomics, 2014, 96, 253-262.	1.2	209
4	Reversed-Phase-Reversed-Phase Liquid Chromatography Approach with High Orthogonality for Multidimensional Separation of Phosphopeptides. Analytical Chemistry, 2010, 82, 53-56.	3.2	135
5	ZnAlâ€Hydrotalciteâ€Supported Au ₂₅ Nanoclusters as Precatalysts for Chemoselective Hydrogenation of 3â€Nitrostyrene. Angewandte Chemie - International Edition, 2017, 56, 2709-2713.	7.2	127
6	"One-Pot―Process for Fabrication of Organic-Silica Hybrid Monolithic Capillary Columns Using Organic Monomer and Alkoxysilane. Analytical Chemistry, 2009, 81, 3529-3536.	3.2	126
7	Highly Efficient Extraction of Serum Peptides by Ordered Mesoporous Carbon. Angewandte Chemie - International Edition, 2011, 50, 12218-12221.	7.2	118
8	Capillary Trap Column with Strong Cation-Exchange Monolith for Automated Shotgun Proteome Analysis. Analytical Chemistry, 2007, 79, 6599-6606.	3.2	113
9	Preparation of monodisperse immobilized Ti4+ affinity chromatography microspheres for specific enrichment of phosphopeptides. Analytica Chimica Acta, 2009, 636, 34-41.	2.6	105
10	Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets. Molecular and Cellular Proteomics, 2018, 17, 1864-1874.	2.5	105
11	Gold Nanorod Photothermal Therapy Alters Cell Junctions and Actin Network in Inhibiting Cancer Cell Collective Migration. ACS Nano, 2018, 12, 9279-9290.	7.3	105
12	Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga. Journal of Biological Chemistry, 2016, 291, 5676-5687.	1.6	100
13	Synthesis of branched PEG brushes hybrid hydrophilic magnetic nanoparticles for the selective enrichment of N-linked glycopeptides. Chemical Communications, 2012, 48, 8138.	2.2	99
14	Centrifugation Assisted Microreactor Enables Facile Integration of Trypsin Digestion, Hydrophilic Interaction Chromatography Enrichment, and On-Column Deglycosylation for Rapid and Sensitive N-Glycoproteome Analysis. Analytical Chemistry, 2012, 84, 5146-5153.	3.2	95
15	Coupling Strong Anion-Exchange Monolithic Capillary with MALDI-TOF MS for Sensitive Detection of Phosphopeptides in Protein Digest. Analytical Chemistry, 2010, 82, 2907-2915.	3.2	93
16	Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion. Journal of Proteomics, 2016, 141, 24-46.	1.2	90
17	Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications. Journal of Chromatography A, 2014, 1372, 1-17.	1.8	86
18	Comprehensive Mapping of Protein N-Glycosylation in Human Liver by Combining Hydrophilic Interaction Chromatography and Hydrazide Chemistry. Journal of Proteome Research, 2014, 13, 1713-1721.	1.8	74

#	Article	IF	CITATIONS
19	Comparative proteomic analysis of <i>Rhodosporidium toruloides</i> during lipid accumulation. Yeast, 2009, 26, 553-566.	0.8	72
20	Oncogenic AURKA-enhanced N6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Research, 2021, 31, 345-361.	5.7	68
21	A Fully Automated System with Online Sample Loading, Isotope Dimethyl Labeling and Multidimensional Separation for High-Throughput Quantitative Proteome Analysis. Analytical Chemistry, 2010, 82, 3007-3015.	3.2	66
22	Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nature Communications, 2018, 9, 4416.	5.8	61
23	Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorganic Chemistry, 2019, 92, 103199.	2.0	61
24	Improvement of the Quantification Accuracy and Throughput for Phosphoproteome Analysis by a Pseudo Triplex Stable Isotope Dimethyl Labeling Approach. Analytical Chemistry, 2011, 83, 7755-7762.	3.2	57
25	Development of Glycoprotein Capture-Based Label-Free Method for the High-throughput Screening of Differential Glycoproteins in Hepatocellular Carcinoma. Molecular and Cellular Proteomics, 2011, 10, M110.006445.	2.5	55
26	Monolithic Capillary Column Based Glycoproteomic Reactor for High-Sensitive Analysis of N-Glycoproteome. Analytical Chemistry, 2013, 85, 2847-2852.	3.2	53
27	Five-plex isotope dimethyl labeling for quantitative proteomics. Chemical Communications, 2014, 50, 1708.	2.2	51
28	Perspectives of Comprehensive Phosphoproteome Analysis Using Shotgun Strategy. Analytical Chemistry, 2011, 83, 8078-8085.	3.2	50
29	Facile preparation of ordered mesoporous silica–carbon composite nanoparticles for glycan enrichment. Chemical Communications, 2013, 49, 5162.	2.2	49
30	Improve the Coverage for the Analysis of Phosphoproteome of HeLa Cells by a Tandem Digestion Approach. Journal of Proteome Research, 2012, 11, 2828-2837.	1.8	47
31	Capture and Dimethyl Labeling of Glycopeptides on Hydrazide Beads for Quantitative Glycoproteomics Analysis. Analytical Chemistry, 2012, 84, 8452-8456.	3.2	45
32	Unusual zymogen activation patterns in the protein corona of Ca-zeolites. Nature Catalysis, 2021, 4, 607-614.	16.1	44
33	The proteome analysis of oleaginous yeast Lipomyces starkeyi. FEMS Yeast Research, 2011, 11, 42-51.	1.1	43
34	A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skeletal Muscle, 2012, 2, 5.	1.9	43
35	A proteomic analysis of engineered tendon formation under dynamic mechanical loading in vitro. Biomaterials, 2011, 32, 4085-4095.	5.7	40
36	ZnAlâ€Hydrotalciteâ€Supported Au ₂₅ Nanoclusters as Precatalysts for Chemoselective Hydrogenation of 3â€Nitrostyrene. Angewandte Chemie, 2017, 129, 2753-2757.	1.6	40

#	Article	IF	CITATIONS
37	Phosphoric acid functionalized mesoporous organo-silica (EPO) as the adsorbent for in situ enrichment and isotope labeling of endogenous phosphopeptides. Chemical Communications, 2012, 48, 961-963.	2.2	38
38	Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic capillary columns. Journal of Chromatography A, 2013, 1317, 138-147.	1.8	38
39	Proteomics Analysis of O-GalNAc Glycosylation in Human Serum by an Integrated Strategy. Analytical Chemistry, 2017, 89, 1469-1476.	3.2	38
40	Online Multidimensional Separation with Biphasic Monolithic Capillary Column for Shotgun Proteome Analysis. Journal of Proteome Research, 2008, 7, 306-310.	1.8	35
41	Development of a combined chemical and enzymatic approach for the mass spectrometric identification and quantification of aberrant N-glycosylation. Journal of Proteomics, 2012, 75, 1666-1674.	1.2	35
42	Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides. Journal of Chromatography A, 2015, 1425, 213-220.	1.8	35
43	Proteomic analysis of protein methylation in the yeast Saccharomyces cerevisiae. Journal of Proteomics, 2015, 114, 226-233.	1.2	35
44	Isobaric cross-sequence labeling of peptides by using site-selective N-terminus dimethylation. Chemical Communications, 2012, 48, 6265.	2.2	34
45	Proteomic reactors and their applications in biology. FEBS Journal, 2011, 278, 3796-3806.	2.2	33
46	High-Sensitivity N-Glycoproteomic Analysis of Mouse Brain Tissue by Protein Extraction with a Mild Detergent of N-Dodecyl β-D-Maltoside. Analytical Chemistry, 2015, 87, 2054-2057.	3.2	32
47	Functionalizing with glycopeptide dendrimers significantly enhances the hydrophilicity of the magnetic nanoparticles. Chemical Communications, 2015, 51, 4093-4096.	2.2	32
48	A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method. Scientific Reports, 2015, 5, 10164.	1.6	32
49	Comprehensive proteome quantification reveals NgBR as a new regulator for epithelial–mesenchymal transition of breast tumor cells. Journal of Proteomics, 2015, 112, 38-52.	1.2	32
50	Real-Time Tracking the Synthesis and Degradation of Albumin in Complex Biological Systems with a near-Infrared Fluorescent Probe. Analytical Chemistry, 2017, 89, 9884-9891.	3.2	32
51	Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor. Molecular and Cellular Proteomics, 2011, 10, O111.008425.	2.5	31
52	A simple integrated system for rapid analysis of sialicâ€acidâ€containing <i><scp>N</scp></i> â€glycopeptides from human serum. Proteomics, 2013, 13, 1306-1313.	1.3	30
53	Analytical Aspects of Proteomics: 2009–2010. Analytical Chemistry, 2011, 83, 4407-4426.	3.2	28
54	Selective capture of phosphopeptides by hierarchical Ti-aluminophosphate-5 molecular sieves. Chemical Communications, 2012, 48, 1802.	2.2	26

#	Article	IF	CITATIONS
55	Large-Scale Quantification of Single Amino-Acid Variations by a Variation-Associated Database Search Strategy. Journal of Proteome Research, 2014, 13, 241-248.	1.8	26
56	Isolation and characterization of PSI–LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae. Photosynthesis Research, 2017, 133, 201-214.	1.6	26
57	Comprehensive and Reliable Phosphorylation Site Mapping of Individual Phosphoproteins by Combination of Multiple Stage Mass Spectrometric Analysis with a Target-Decoy Database Search. Analytical Chemistry, 2009, 81, 5794-5805.	3.2	25
58	Preparation of capillary hybrid monolithic column with sulfonate strong cation exchanger for proteome analysis. Journal of Chromatography A, 2012, 1256, 136-143.	1.8	25
59	Preparation of a butyl–silica hybrid monolithic column with a "one-pot―process for bioseparation by capillary liquid chromatography. Analytical and Bioanalytical Chemistry, 2013, 405, 2265-2271.	1.9	24
60	CN and NH Bond Metathesis Reactions Mediated by Carbon Dioxide. ChemSusChem, 2015, 8, 2066-2072.	3.6	24
61	Probing the Lysine Proximal Microenvironments within Membrane Protein Complexes by Active Dimethyl Labeling and Mass Spectrometry. Analytical Chemistry, 2016, 88, 12060-12065.	3.2	24
62	Large-Scale Proteome Quantification of Hepatocellular Carcinoma Tissues by a Three-Dimensional Liquid Chromatography Strategy Integrated with Sample Preparation. Journal of Proteome Research, 2014, 13, 3645-3654.	1.8	22
63	Automated injection of uncleaned samples using a ten-port switching valve and a strong cation-exchange trap column for proteome analysis. Journal of Chromatography A, 2007, 1171, 56-62.	1.8	21
64	Reductive methylation labeling, from quantitative to structural proteomics. TrAC - Trends in Analytical Chemistry, 2019, 118, 771-778.	5.8	21
65	Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling. Chemical Communications, 2019, 55, 4311-4314.	2.2	20
66	Comprehensive analysis of the N and C terminus of endogenous serum peptides reveals a highly conserved cleavage site pattern derived from proteolytic enzymes. Protein and Cell, 2012, 3, 669-674.	4.8	19
67	Enhancing the performance of LC-MS for intact protein analysis by counteracting the signal suppression effects of trifluoroacetic acid during electrospray. Chemical Communications, 2015, 51, 14758-14760.	2.2	19
68	Protein digestomic analysis reveals the bioactivity of deer antler velvet in simulated gastrointestinal digestion. Food Research International, 2017, 96, 182-190.	2.9	19
69	Probing the Proteomics Dark Regions by VAILase Cleavage at Aliphatic Amino Acids. Analytical Chemistry, 2020, 92, 2770-2777.	3.2	19
70	Highly efficient N-glycoproteomic sample preparation by combining C18 and graphitized carbon adsorbents. Analytical and Bioanalytical Chemistry, 2014, 406, 3103-3109.	1.9	18
71	Proteomic analysis reveals the protective effects of emodin on severe acute pancreatitis induced lung injury by inhibiting neutrophil proteases activity. Journal of Proteomics, 2020, 220, 103760.	1.2	18
72	Inactivating SARS-CoV-2 by electrochemical oxidation. Science Bulletin, 2021, 66, 720-726.	4.3	18

#	Article	IF	CITATIONS
73	Phosphoproteome analysis of an early onset mouse model (<scp>T</scp> g <scp>CRND</scp> 8) of <scp>A</scp> lzheimer's disease reveals temporal changes in neuronal and glia signaling pathways. Proteomics, 2013, 13, 1292-1305.	1.3	17
74	Small-Molecule Antagonist Targeting Exportin-1 via Rational Structure-Based Discovery. Journal of Medicinal Chemistry, 2020, 63, 3881-3895.	2.9	17
75	Improvement of performance in labelâ€free quantitative proteome analysis with monolithic electrospray ionization emitter. Journal of Separation Science, 2008, 31, 2589-2597.	1.3	16
76	Fractionation of phosphopeptides on strong anionâ€exchange capillary trap column for largeâ€scale phosphoproteome analysis of microgram samples. Journal of Separation Science, 2010, 33, 1879-1887.	1.3	16
77	Improvement of proteome coverage using hydrophobic monolithic columns in shotgun proteome analysis. Journal of Chromatography A, 2009, 1216, 3887-3894.	1.8	15
78	Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy. Journal of Chromatography A, 2016, 1461, 35-41.	1.8	15
79	Probing conformational hotspots for the recognition and intervention of protein complexes by lysine reactivity profiling. Chemical Science, 2021, 12, 1451-1457.	3.7	15
80	Combination of online enzyme digestion with stable isotope labeling for highâ€ŧhroughput quantitative proteome analysis. Proteomics, 2012, 12, 3129-3137.	1.3	14
81	Nâ€Terminal Labeling of Peptides by Trypsinâ€Catalyzed Ligation for Quantitative Proteomics. Angewandte Chemie - International Edition, 2013, 52, 9205-9209.	7.2	14
82	Global Quantification of Intact Proteins via Chemical Isotope Labeling and Mass Spectrometry. Journal of Proteome Research, 2019, 18, 2185-2194.	1.8	14
83	Quantitative Lysine Reactivity Profiling Reveals Conformational Inhibition Dynamics and Potency of Aurora A Kinase Inhibitors. Analytical Chemistry, 2019, 91, 13222-13229.	3.2	13
84	Integration of monolithic frit into the particulate capillary (IMFPC) column in shotgun proteome analysis. Analytica Chimica Acta, 2009, 652, 324-330.	2.6	12
85	<i>In Situ</i> Sample Processing Approach (iSPA) for Comprehensive Quantitative Phosphoproteome Analysis. Journal of Proteome Research, 2014, 13, 3896-3904.	1.8	12
86	Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation. Journal of Biological Chemistry, 2016, 291, 21123-21136.	1.6	12
87	Detecting Proteins Glycosylation by a Homogeneous Reaction System with Zwitterionic Gold Nanoclusters. Analytical Chemistry, 2017, 89, 4339-4343.	3.2	12
88	Highly efficient artificial blood coagulation shortcut confined on Ca-zeolite surface. Nano Research, 2021, 14, 3309-3318.	5.8	12
89	A "one step―approach for preparation of an octadecyl–silica hybrid monolithic column via a non-hydrolytic sol–gel (NHSG) method. RSC Advances, 2013, 3, 22160.	1.7	11
90	A six-plex proteome quantification strategy reveals the dynamics of protein turnover. Scientific Reports, 2013, 3, 1827.	1.6	11

#	Article	IF	CITATIONS
91	In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Science China Chemistry, 2022, 65, 1196-1203.	4.2	11
92	Analysis of human serum phosphopeptidome by a focused database searching strategy. Journal of Proteomics, 2013, 78, 389-397.	1.2	10
93	Enhancing the Mass Spectrometry Sensitivity for Oligonucleotide Detection by Organic Vapor Assisted Electrospray. Analytical Chemistry, 2017, 89, 10256-10263.	3.2	10
94	Automation of nanoflow liquid chromatographyâ€ŧandem mass spectrometry for proteome and peptide profiling analysis by using a monolithic analytical capillary column. Electrophoresis, 2008, 29, 1612-1618.	1.3	9
95	Water-soluble Au nanoclusters for multiplexed mass spectrometry imaging. Chemical Communications, 2017, 53, 12688-12691.	2.2	9
96	Characterization and manipulation of the photosystem II-semiconductor interfacial molecular interactions in solar-to-chemical energy conversion. Journal of Energy Chemistry, 2022, 70, 437-443.	7.1	9
97	Single-Atom Pt ⁺ Derived from the Laser Dissociation of a Platinum Cluster: Insights into Nonoxidative Alkane Conversion. Journal of Physical Chemistry Letters, 2020, 11, 5987-5991.	2.1	8
98	Elucidating the Molecular Mechanism of Dynamic Photodamage of Photosystem II Membrane Protein Complex by Integrated Proteomics Strategy. CCS Chemistry, 2022, 4, 182-193.	4.6	8
99	Comprehensive proteomic analysis of sea cucumbers (Stichopus japonicus) in thermal processing by HPLC-MS/MS. Food Chemistry, 2022, 373, 131368.	4.2	8
100	Motif-dependent immune co-receptor interactome profiling by photoaffinity chemical proteomics. Cell Chemical Biology, 2022, 29, 1024-1036.e5.	2.5	8
101	Differential analysis of N-glycoproteome between hepatocellular carcinoma and normal human liver tissues by combination of multiple protease digestion and solid phase based labeling. Clinical Proteomics, 2014, 11, 26.	1.1	7
102	Inhibition of human thrombin by the constituents of licorice: inhibition kinetics and mechanistic insights through <i>in vitro</i> and <i>in silico</i> studies. RSC Advances, 2020, 10, 3626-3635.	1.7	7
103	Improving the performance of proteomic analysis via VAILase cleavage and 193-nm ultraviolet photodissociation. Analytica Chimica Acta, 2021, 1155, 338340.	2.6	7
104	Reversed Phase Monolithic Column Based Enzyme Reactor for Protein Analysis. Chinese Journal of Analytical Chemistry, 2013, 41, 10-14.	0.9	6
105	Elucidating the various multi-phosphorylation statuses of protein functional regions by 193-nm ultraviolet photodissociation. Chinese Chemical Letters, 2018, 29, 694-698.	4.8	6
106	Chloride-Mediated Peroxide-Free Photochemical Oxidation of Proteins (PPOP) in Mass Spectrometry-Based Structural Analysis. Analytical Chemistry, 2022, 94, 1135-1142.	3.2	6
107	High specific phosphopeptides enrichment by titanium silicalite with post-treatment of desilication. Analytical Methods, 2013, 5, 2939.	1.3	5
108	Electrospray ionization in concentrated acetonitrile vapor improves the performance of mass spectrometry for proteomic analyses. Journal of Chromatography A, 2017, 1483, 101-109.	1.8	5

#	Article	IF	CITATIONS
109	Identification of pyridoxal phosphateâ€modified proteins using mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 195-200.	0.7	5
110	Photochemical bromination and iodination of peptides and proteins by photoexcitation of aqueous halides. Chemical Communications, 2021, 57, 11972-11975.	2.2	5
111	6-Shogaol Inhibits Oxidative Stress-Induced Rat Vascular Smooth Muscle Cell Apoptosis by Regulating OXR1-p53 Axis. Frontiers in Molecular Biosciences, 2022, 9, 808162.	1.6	5
112	The interfacial interactions of nanomaterials with human serum albumin. Analytical and Bioanalytical Chemistry, 2022, 414, 4677-4684.	1.9	5
113	Specific mixing facilitates the comparative quantification of phosphorylation sites with significant dysregulations. Analytica Chimica Acta, 2017, 950, 129-137.	2.6	4
114	Lysine reactivity profiling reveals molecular insights into human serum albumin–small-molecule drug interactions. Analytical and Bioanalytical Chemistry, 2021, 413, 7431-7440.	1.9	4
115	Self-Adaptable Quinone–Quinol Exchange Mechanism of Photosystem II. Journal of Physical Chemistry B, 2018, 122, 10478-10489.	1.2	3
116	Elucidating the molecular mechanisms of perfluorooctanoic acid-serum protein interactions by structural mass spectrometry. Chemosphere, 2021, , 132945.	4.2	3
117	Emerging investigator series: long-term exposure of amorphous silica nanoparticles disrupts the lysosomal and cholesterol homeostasis in macrophages. Environmental Science: Nano, 2022, 9, 105-117.	2.2	3
118	A strategy with label-free quantification of the targeted peptides for quantitative peptidome analysis of human serum. Science China Chemistry, 2010, 53, 759-767.	4.2	2
119	Nano LC-MS Based Proteomic Analysis as a Predicting Approach to Study Cellular Responses of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2016, 16, 2350-2359.	0.9	2
120	Profiling the short-lived cationic species generated during catalytic dehydration of short-chain alcohols. Communications Chemistry, 2018, 1, .	2.0	2
121	High-performance micro/nanoplastics characterization by MALDI-FTICR mass spectrometry. Chemosphere, 2022, 307, 135601.	4.2	2
122	Enrichment of peptides containing consensus sequence by an enzymatic approach for targeted analysis ofproteins. Proteomics, 2011, 11, 3578-3581.	1.3	1
123	Analysis of oligonucleotides by ion-pair reversed-phase liquid chromatography coupled with positive mode electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 4167-4173.	1.9	1
124	Size-Selective VAILase Proteolysis Provides Dynamic Insights into Protein Structures. Analytical Chemistry, 2021, 93, 10653-10660.	3.2	1
125	Large-Scale Proteome and Phosphoproteome Quantification by Using Dimethylation Isotope Labeling. Springer Theses, 2014, , 67-94.	0.0	0
126	Development of Polymer-Based Hydrophobic Monolithic Columns and Their Applications in Proteome Analysis. Springer Theses, 2014, , 35-65.	0.0	0

#	Article	IF	CITATIONS
127	Applications of Monolithic Column and Isotope Dimethylation Labeling in Shotgun Proteome Analysis. Springer Theses, 2014, , .	0.0	0
128	Catalyst-free Photochemical Bromination of Unprotected Aromatic Amino Acid Derivatives by Using a Rotating Ultraviolet Photoreactor. Chemical Research in Chinese Universities, 0, , 1.	1.3	0