
Kai Dallmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6280165/publications.pdf Version: 2024-02-01

KAI DALI MEIED

#	Article	IF	CITATIONS
1	Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell, 2022, 185, 379-396.e38.	13.5	343
2	The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antiviral Research, 2022, 198, 105253.	1.9	104
3	Japanese Encephalitis Virus Persistence in Porcine Tonsils Is Associated With a Weak Induction of the Innate Immune Response, an Absence of IFNγ mRNA Expression, and a Decreased Frequency of CD4+CD8+ Double-Positive T Cells. Frontiers in Cellular and Infection Microbiology, 2022, 12, 834888.	1.8	2
4	MVA-CoV2-S Vaccine Candidate Neutralizes Distinct Variants of Concern and Protects Against SARS-CoV-2 Infection in Hamsters. Frontiers in Immunology, 2022, 13, 845969.	2.2	16
5	Biodistribution and environmental safety of a live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Molecular Therapy - Methods and Clinical Development, 2022, 25, 215-224.	1.8	5
6	HIV protease inhibitors Nelfinavir and Lopinavir/Ritonavir markedly improve lung pathology in SARS-CoV-2-infected Syrian hamsters despite lack of an antiviral effect. Antiviral Research, 2022, 202, 105311.	1.9	8
7	Use of Micro-Computed Tomography to Visualize and Quantify COVID-19 Efficiency in Free-Breathing Hamsters. Methods in Molecular Biology, 2022, 2410, 177-192.	0.4	5
8	Use of Optical In Vivo Imaging to Monitor and Optimize Delivery of Novel Plasmid-Launched Live-Attenuated Vaccines. Methods in Molecular Biology, 2022, 2412, 283-294.	0.4	1
9	Palaeoserology $\hat{a} \in $ teeth put into ancient plagues and pandemics. Microbial Biotechnology, 2022, , .	2.0	2
10	High Incidence of SARS-CoV-2 Variant of Concern Breakthrough Infections Despite Residual Humoral and Cellular Immunity Induced by BNT162b2 Vaccination in Healthcare Workers: A Long-Term Follow-Up Study in Belgium. Viruses, 2022, 14, 1257.	1.5	7
11	A High-Throughput Yellow Fever Neutralization Assay. Microbiology Spectrum, 2022, 10, .	1.2	8
12	ldentification of host factors binding to dengue and Zika virus subgenomic RNA by efficient yeast three-hybrid screens of the human ORFeome. RNA Biology, 2021, 18, 732-744.	1.5	7
13	Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nature Genetics, 2021, 53, 435-444.	9.4	162
14	COVID-19 and the intensive care unit: vaccines to the rescue. Intensive Care Medicine, 2021, 47, 786-789.	3.9	8
15	Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine, 2021, 68, 103403.	2.7	102
16	A novel therapeutic HBV vaccine candidate induces strong polyfunctional cytotoxic T cell responses in mice. JHEP Reports, 2021, 3, 100295.	2.6	7
17	The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine, 2021, 72, 103595.	2.7	91
18	A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature, 2021, 590, 320-325.	13.7	148

Kai Dallmeier

#	Article	IF	CITATIONS
19	A pan-serotype dengue virusÂinhibitor targeting the NS3–NS4BÂinteraction. Nature, 2021, 598, 504-509.	13.7	90
20	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5.8	41
21	Comparing immunogenicity and protective efficacy of the yellow fever 17D vaccine in mice. Emerging Microbes and Infections, 2021, 10, 2279-2290.	3.0	6
22	A Yellow Fever 17D Virus Replicon-Based Vaccine Platform for Emerging Coronaviruses. Vaccines, 2021, 9, 1492.	2.1	2
23	Favipiravir at high doses has potent antiviral activity in SARS-CoV-2â~'infected hamsters, whereas hydroxychloroquine lacks activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26955-26965.	3.3	240
24	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
25	STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communications, 2020, 11, 5838.	5.8	225
26	Efficient control of Japanese encephalitis virus in the central nervous system of infected pigs occurs in the absence of a pronounced inflammatory immune response. Journal of Neuroinflammation, 2020, 17, 315.	3.1	12
27	A dengue type 2 reporter virus assay amenable to high-throughput screening. Antiviral Research, 2020, 183, 104929.	1.9	13
28	Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. Nature Communications, 2020, 11, 4253.	5.8	43
29	Small-molecule inhibitors of TBK1 serve as an adjuvant for a plasmid-launched live-attenuated yellow fever vaccine. Human Vaccines and Immunotherapeutics, 2020, 16, 2196-2203.	1.4	11
30	The Development of RNA-KISS, a Mammalian Three-Hybrid Method to Detect RNA–Protein Interactions in Living Mammalian Cells. Journal of Proteome Research, 2020, 19, 2529-2538.	1.8	4
31	Towards rabies elimination in the Asia-Pacific region: From theory to practice. Biologicals, 2020, 64, 83-95.	0.5	25
32	A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice. Emerging Microbes and Infections, 2020, 9, 520-533.	3.0	21
33	A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies. MBio, 2020, 11, .	1.8	30
34	Viral engagement with host receptors blocked by a novel class of tryptophan dendrimers that targets the 5-fold-axis of the enterovirus-A71 capsid. PLoS Pathogens, 2019, 15, e1007760.	2.1	26
35	Limited evolution of the yellow fever virus 17d in a mouse infection model. Emerging Microbes and Infections, 2019, 8, 1734-1746.	3.0	18
36	A yellow fever–Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice. Npj Vaccines, 2018, 3, 56.	2.9	41

KAI DALLMEIER

#	Article	IF	CITATIONS
37	A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host and Microbe, 2018, 24, 487-499.e5.	5.1	46
38	Discovery of Indole Derivatives as Novel and Potent Dengue Virus Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8390-8401.	2.9	43
39	Zika genomics urgently need standardized and curated reference sequences. PLoS Pathogens, 2017, 13, e1006528.	2.1	10
40	Upregulation of sodium taurocholate cotransporter polypeptide during hepatogenic differentiation of umbilical cord matrix mesenchymal stem cells facilitates hepatitis B entry. Stem Cell Research and Therapy, 2017, 8, 204.	2.4	6
41	A rat model for hepatitis E virus. DMM Disease Models and Mechanisms, 2016, 9, 1203-1210.	1.2	23
42	Hepatitis E virus mutations associated with ribavirin treatment failure result in altered viral fitness and ribavirin sensitivity. Journal of Hepatology, 2016, 65, 499-508.	1.8	99
43	Zika and Other Emerging Viruses: Aiming at the Right Target. Cell Host and Microbe, 2016, 20, 420-422.	5.1	8
44	Hydantoin: The mechanism of its inÂvitro anti-enterovirus activity revisited. Antiviral Research, 2016, 133, 106-109.	1.9	10
45	Zika Virus Replicons for Drug Discovery. EBioMedicine, 2016, 12, 156-160.	2.7	77
46	Stem cell-derived hepatocytes: A novel model for hepatitis E virus replication. Journal of Hepatology, 2016, 64, 565-573.	1.8	51
47	Flaviviral NS4b, chameleon and jackâ€inâ€theâ€box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Reviews in Medical Virology, 2015, 25, 205-223.	3.9	86
48	Complete Genome Sequence of a Rat Hepatitis E Virus Strain Isolated in the United States. Genome Announcements, 2014, 2, .	0.8	4
49	Ribavirin Inhibits <i>In Vitro</i> Hepatitis E Virus Replication through Depletion of Cellular GTP Pools and Is Moderately Synergistic with Alpha Interferon. Antimicrobial Agents and Chemotherapy, 2014, 58, 267-273.	1.4	126
50	A Mutation in the Hepatitis E Virus RNA Polymerase Promotes Its Replication and Associates With Ribavirin Treatment Failure in Organ Transplant Recipients. Gastroenterology, 2014, 147, 1008-1011.e7.	0.6	171
51	Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. Journal of Antimicrobial Chemotherapy, 2014, 69, 2770-2784.	1.3	187
52	Infectious Virus Yield Assay for Hepatitis E Virus. Bio-protocol, 2014, 4, .	0.2	1
53	Luminescence-based Antiviral Assay for Hepatitis E Virus. Bio-protocol, 2014, 4, .	0.2	1
54	Simple and inexpensive three-step rapid amplification of cDNA 5′ ends using 5′ phosphorylated primers. Analytical Biochemistry, 2013, 434, 1-3.	1.1	17

Kai Dallmeier

#	Article	IF	CITATIONS
55	Differentiated umbilical cord matrix stem cells as a newin vitromodel to study early events during hepatitis B virus infection. Hepatology, 2013, 57, 59-69.	3.6	24
56	Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication. Antiviral Research, 2013, 100, 98-101.	1.9	14
57	Favipiravir (T-705) inhibits in vitro norovirus replication. Biochemical and Biophysical Research Communications, 2012, 424, 777-780.	1.0	122
58	Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Research, 2012, 96, 280-287.	1.9	29
59	Inhibition of norovirus replication by the nucleoside analogue 2′-C-methylcytidine. Biochemical and Biophysical Research Communications, 2012, 427, 796-800.	1.0	59
60	lvermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. Journal of Antimicrobial Chemotherapy, 2012, 67, 1884-1894.	1.3	329
61	Ribavirin for the treatment of chronic hepatitis C virus infection: a review of the proposed mechanisms of action. Current Opinion in Virology, 2011, 1, 590-598.	2.6	101
62	Inhibition of hepatitis C virus replication by semi-synthetic derivatives of glycopeptide antibiotics. Journal of Antimicrobial Chemotherapy, 2011, 66, 1287-1294.	1.3	17
63	Replication of not-known-vector flaviviruses in mosquito cells is restricted by intracellular host factors rather than by the viral envelope proteins. Journal of General Virology, 2010, 91, 1693-1697.	1.3	22
64	Heterologous Replacement of the Supposed Host Determining Region of Avihepadnaviruses: High In Vivo Infectivity Despite Low Infectivity for Hepatocytes. PLoS Pathogens, 2008, 4, e1000230.	2.1	7
65	Hepadnaviruses have a narrow host range — do they?. , 2008, , 303-339.		2
66	A Structural Model for Duck Hepatitis B Virus Core Protein Derived by Extensive Mutagenesis. Journal of Virology, 2007, 81, 13218-13229.	1.5	19
67	Phenotyping hepatitis B virus variants: From transfection towards a small animal in vivo infection model. Journal of Clinical Virology, 2005, 34, S89-S95.	1.6	6