Yongsheng Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6279447/publications.pdf

Version: 2024-02-01

34	1,042	17 h-index	32
papers	citations		g-index
34	34	34	1633 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Efficient Thermally Evaporated Perovskite Light-Emitting Devices via a Bilateral Interface Engineering Strategy. Journal of Physical Chemistry Letters, 2021, 12, 6165-6173.	4.6	12
2	Efficient and Stable Blue Perovskite Light-Emitting Devices Based on Inorganic Cs ₄ PbBr ₆ Spaced Low-Dimensional CsPbBr ₃ through Synergistic Control of Amino Alcohols and Polymer Additives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33199-33208.	8.0	12
3	Solidâ€State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angewandte Chemie, 2021, 133, 25718-25725.	2.0	9
4	Solidâ€State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angewandte Chemie - International Edition, 2021, 60, 25514-25521.	13.8	59
5	Investigation of the effective aperture: towards high-resolution Fresnel incoherent correlation holography. Optics Express, 2021, 29, 31549.	3.4	7
6	High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector. Applied Physics Letters, 2020, 117, 153301.	3.3	13
7	Improving the Efficiency of Multilayer Organic Lightâ€Emitting Transistors by Exploring the Hole Blocking Effect. Advanced Materials Interfaces, 2020, 7, 2000657.	3.7	11
8	Surface Plasmon Resonance Sensor Based on Dual-Side Polished Microstructured Optical Fiber with Dual-Core. Sensors, 2020, 20, 3911.	3.8	26
9	Boosting the Efficiency and Stability of Perovskite Light-Emitting Devices by a 3-Amino-1-propanol-Tailored PEDOT:PSS Hole Transport Layer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43331-43338.	8.0	14
10	Synergistic morphology control and non-radiative defect passivation using a crown ether for efficient perovskite light-emitting devices. Journal of Materials Chemistry C, 2020, 8, 9986-9992.	5 . 5	9
11	Improved Performance for Thermally Evaporated Perovskite Light-Emitting Devices via Defect Passivation and Carrier Regulation. ACS Applied Materials & Interfaces, 2020, 12, 15928-15933.	8.0	23
12	A Large Detection-Range Plasmonic Sensor Based on An H-Shaped Photonic Crystal Fiber. Sensors, 2020, 20, 1009.	3.8	55
13	Microcavityâ€Enhanced Blue Organic Lightâ€Emitting Diode for Highâ€Quality Monochromatic Light Source with Nonquarterwave Structural Design. Advanced Optical Materials, 2020, 8, 1901421.	7.3	13
14	Microcavity OLEDs: Microcavityâ€Enhanced Blue Organic Lightâ€Emitting Diode for Highâ€Quality Monochromatic Light Source with Nonquarterwave Structural Design (Advanced Optical Materials) Tj ETQq0 0 C) rg B3 /Ov	erlozck 10 Tf 50
15	A Temperature Plasmonic Sensor Based on a Side Opening Hollow Fiber Filled with High Refractive Index Sensing Medium. Sensors, 2019, 19, 3730.	3.8	28
16	Eu and F co-doped ZnO-based transparent electrodes for organic and quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5542-5551.	5.5	14
17	WO ₃ â€Based Electrochromic Distributed Bragg Reflector: Toward Electrically Tunable Microcavity Luminescent Device. Advanced Optical Materials, 2018, 6, 1700791.	7.3	45
18	High Brightness and Enhanced Stability of CsPbBr ₃ â€Based Perovskite Lightâ€Emitting Diodes by Morphology and Interface Engineering. Advanced Optical Materials, 2018, 6, 1801245.	7.3	57

#	Article	IF	Citations
19	Improved performance of CsPbBr ₃ perovskite light-emitting devices by both boundary and interface defects passivation. Nanoscale, 2018, 10, 18315-18322.	5.6	29
20	Enhanced Performance and Flexibility of Perovskite Solar Cells Based on Microstructured Multilayer Transparent Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 18141-18148.	8.0	23
21	Study on the Photoresponse Characteristics of Organic Light-Emitting Field-Effect Transistors. Journal of Physical Chemistry C, 2018, 122, 15190-15197.	3.1	1
22	Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors. ACS Applied Materials & Empty Interfaces, 2017, 9, 2711-2719.	8.0	48
23	Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36103-36110.	8.0	26
24	Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38755-38760.	8.0	204
25	High performance, top-emitting, quantum dot light-emitting diodes with all solution-processed functional layers. Journal of Materials Chemistry C, 2017, 5, 9138-9145.	5 . 5	18
26	Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr ₃ Films. Journal of Physical Chemistry Letters, 2017, 8, 4148-4154.	4.6	145
27	Transparent perovskite light-emitting diodes by employing organic-inorganic multilayer transparent top electrodes. Applied Physics Letters, 2017, 111, 213301.	3.3	6
28	Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. Science Bulletin, 2017, 62, 1637-1638.	9.0	22
29	Improved Performance of Organic Light-Emitting Field-Effect Transistors by Interfacial Modification of Hole-Transport Layer/Emission Layer: Incorporating Organic Heterojunctions. ACS Applied Materials & amp; Interfaces, 2016, 8, 14063-14070.	8.0	30
30	Vertical Microcavity Organic Light-emitting Field-effect Transistors. Scientific Reports, 2016, 6, 23210.	3.3	15
31	Efficient inverted polymer solar cells employing an aqueous processing RbF cathode interfacial layer. RSC Advances, 2016, 6, 47454-47458.	3.6	1
32	Ultrathin Metal Fluoride Interfacial Layers for Use in Organic Photovoltaic Cells. Advanced Functional Materials, 2015, 25, 6906-6912.	14.9	16
33	Pixeled Electroluminescence from Multilayer Heterostructure Organic Light-Emitting Transistors. Journal of Physical Chemistry C, 2015, 119, 20237-20243.	3.1	14
34	Transparent organic thin film transistors with WO3/Ag/WO3 source-drain electrodes fabricated by thermal evaporation. Applied Physics Letters, 2013, 103, 033301.	3.3	35