Changmou Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6279160/publications.pdf

Version: 2024-02-01

24 papers 896 citations

567281 15 h-index 713466 21 g-index

24 all docs

 $\begin{array}{c} 24 \\ \text{docs citations} \end{array}$

times ranked

24

1292 citing authors

#	Article	IF	CITATIONS
1	High pressure processing (HPP) improved safety and quality of emerging aronia berry juice: a pilot scale shelf-life study. Journal of Food Science and Technology, 2022, 59, 755-767.	2.8	5
2	The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration. Food Chemistry, 2022, 373, 131471.	8.2	38
3	Identification of key astringent compounds in aronia berry juice. Food Chemistry, 2022, 393, 133431.	8.2	5
4	Biofortification with selenium and lithium improves nutraceutical properties of major winery grapes in the Midwestern United States. International Journal of Food Science and Technology, 2021, 56, 825-837.	2.7	13
5	An overview of the perception and mitigation of astringency associated with phenolic compounds. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1036-1074.	11.7	54
6	Natural Phenolic Compounds as Anti-obesity and Anti-cardiovascular Disease Agent., 2021,, 205-221.		1
7	Phytochemical characterization of ultrasound-processed sorghum sprouts for the use in functional foods. International Journal of Food Properties, 2020, 23, 853-863.	3.0	20
8	Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. Journal of Food Biochemistry, 2020, 44, e13157.	2.9	88
9	Evaluation of phenolic compounds, antioxidant and antiproliferative activities of 31 grape cultivars with different genotypes. Journal of Food Biochemistry, 2019, 43, e12626.	2.9	21
10	Trends in phytochemical research. Journal of Food Biochemistry, 2019, 43, e12913.	2.9	6
11	Applications of extracts from skin and seed muscadine grape (<i>Vitis rotundifolia</i> Michx.) waste on bacterial growth, autoxidation, and color in atlantic salmon (<i>Salmo salar</i> L.). Journal of Food Processing and Preservation, 2019, 43, e13976.	2.0	6
12	Phytochemical profiles, and antimicrobial and antioxidant activities of greater galangal [Alpinia galanga (Linn.) Swartz.] flowers. Food Chemistry, 2018, 255, 300-308.	8.2	34
13	Characterization of Food Structures and Functionalities. International Journal of Analytical Chemistry, 2018, 2018, 1-2.	1.0	2
14	The growing season impacts the accumulation and composition of flavonoids in grape skins in two-crop-a-year viticulture. Journal of Food Science and Technology, 2017, 54, 2861-2870.	2.8	38
15	Fruit quality, nutraceutical and antimicrobial properties of 58 muscadine grape varieties (Vitis) Tj ETQq1 1 0.7843	14.rgBT /0	Dverlock 10 ⁻ 48
16	Profile of Polyphenol Compounds of Five Muscadine Grapes Cultivated in the United States and in Newly Adapted Locations in China. International Journal of Molecular Sciences, 2017, 18, 631.	4.1	22
17	Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chemistry, 2015, 182, 200-208.	8.2	53
18	Identification and Characterization of Tocotrienols in Muscadine Grape Seed Oil and their Inhibitory Effects on Adipogenesis and Inflammation. FASEB Journal, 2015, 29, 390.8.	0.5	0

#	Article	IF	CITATIONS
19	Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds. Food Chemistry, 2014, 157, 20-29.	8.2	49
20	Antioxidant, Antibacterial, and Antibiofilm Properties of Polyphenols from Muscadine Grape (<i>Vitis) Tj ETQq0 0 Food Chemistry, 2014, 62, 6640-6649.</i>	0 rgBT / 5.2	/Overlock 10 Tf 93
21	Influence of Growing Season on Phenolic Compounds and Antioxidant Properties of Grape Berries from Vines Grown in Subtropical Climate. Journal of Agricultural and Food Chemistry, 2011, 59, 1078-1086.	5. 2	89
22	Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chemistry, 2010, 119, 1557-1565.	8.2	177
23	Extraction, distribution and characterisation of phenolic compounds and oil in grapeseeds. Food Chemistry, 2010, 122, 688-694.	8.2	34
24	High Pressure Processing (HPP) Improved the Safety and Quality of Aronia Berry Puree: Validated by a Commercially Applicable Shelf Life Study. ACS Food Science & Technology, 0, , .	2.7	0