Teresa Blasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6278947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures. Journal of Catalysis, 1995, 156, 65-74.	6.2	622
2	Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Tiâ^'Beta Zeolite. Journal of Physical Chemistry B, 1998, 102, 75-88.	2.6	395
3	Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 2006, 237, 267-277.	6.2	370
4	The state of Ti in titanoaluminosilicates isomorphous with zeolite .beta Journal of the American Chemical Society, 1993, 115, 11806-11813.	13.7	359
5	Selective and Shape-Selective Baeyer–Villiger Oxidations of Aromatic Aldehydes and Cyclic Ketones with Sn-Beta Zeolites and H2O2. Chemistry - A European Journal, 2002, 8, 4708-4717.	3.3	252
6	Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene: The benefit of using MCM-41 with larger pore diameters. Journal of Catalysis, 1998, 177, 306-313.	6.2	240
7	Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. Journal of Physical Chemistry B, 2002, 106, 2634-2642.	2.6	228
8	Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. Journal of Catalysis, 2001, 203, 443-452.	6.2	211
9	Influence of the Acid-Base Character of Supported Vanadium Catalysts on Their Catalytic Properties for the Oxidative Dehydrogenation of n-Butane. Journal of Catalysis, 1995, 157, 271-282.	6.2	162
10	Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. Journal of Catalysis, 2006, 242, 153-161.	6.2	141
11	Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie - International Edition, 2002, 41, 4722-4726.	13.8	137
12	Unseeded synthesis of Al-free Ti-β zeolite in fluoride medium: a hydrophobic selective oxidation catalyst. Chemical Communications, 1996, , 2367-2368.	4.1	134
13	Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie - International Edition, 2007, 46, 3938-3941.	13.8	128
14	Preparation, Characterization, and Catalytic Properties of VAPO-5 for the Oxydehydrogenation of Propane. Journal of Catalysis, 1995, 152, 1-17.	6.2	113
15	Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Applied Catalysis A: General, 2013, 453, 1-12.	4.3	85
16	Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 2010, 39, 4685.	38.1	81
17	Coke characterisation in aged residue hydrotreating catalysts by solid-state 13C-NMR spectroscopy and temperature-programmed oxidation. Applied Catalysis A: General, 2001, 218, 181-188.	4.3	80
18	Influence of the alkyl chain length of HSO3-R-MCM-41 on the esterification of glycerol with fatty acids. Microporous and Mesoporous Materials, 2005, 80, 33-42.	4.4	74

Teresa Blasco

#	Article	IF	CITATIONS
19	Ammonia-Containing Species Formed in Cu-Chabazite As Per In Situ EPR, Solid-State NMR, and DFT Calculations. Journal of Physical Chemistry Letters, 2015, 6, 1011-1017.	4.6	72
20	Distribution of Fluorine and Germanium in a New Zeolite Structure ITQ-13 Studied by19F Nuclear Magnetic Resonance. Chemistry of Materials, 2003, 15, 3961-3963.	6.7	71
21	Establishing a Molecular Mechanism for the Beckmann Rearrangement of Oximes over Microporous Molecular Sieves. Angewandte Chemie - International Edition, 2005, 44, 2370-2373.	13.8	66
22	Synthesis, Characterization, and Framework Heteroatom Localization in ITQ-21. Journal of the American Chemical Society, 2004, 126, 13414-13423.	13.7	61
23	Characterization and NH3-SCR reactivity of Cu-Fe-ZSM-5 catalysts prepared by solid state ion exchange: The metal exchange order effect. Microporous and Mesoporous Materials, 2018, 260, 217-226.	4.4	59
24	Spectroscopic Evidence and Density Functional Theory (DFT) Analysis of Low-Temperature Oxidation of Cu ⁺ to Cu ²⁺ NO _{<i>x</i>} in Cu-CHA Catalysts: Implications for the SCR-NO _{<i>x</i>} Reaction Mechanism. ACS Catalysis, 2019, 9, 2725-2738.	11.2	55
25	Insight into the active sites for the Beckmann rearrangement on porous solids by in situ infrared spectroscopy. Journal of Catalysis, 2006, 243, 270-277.	6.2	52
26	Pyrrole as an NMR probe molecule to characterise zeolite basicity. Chemical Communications, 2000, , 491-492.	4.1	46
27	Cold(iii) stabilized over ionic liquids grafted on MCM-41 for highly efficient three-component coupling reactions. Physical Chemistry Chemical Physics, 2013, 15, 16927.	2.8	46
28	Selective oxidation of propane to acrylic acid on K-doped MoVSbO catalysts: catalyst characterization and catalytic performance. Journal of Catalysis, 2004, 228, 362-373.	6.2	45
29	Structural Characterization of Zeolites by Advanced Solid State NMR Spectroscopic Methods. Annual Reports on NMR Spectroscopy, 2012, 77, 259-351.	1.5	44
30	Cooperative Structure-Directing Effect of Fluorine-Containing Organic Molecules and Fluoride Anions in the Synthesis of Zeolites. Chemistry of Materials, 2005, 17, 4374-4385.	6.7	42
31	Investigation on the Nature of the Adsorption Sites of Pyrrole in Alkali-Exchanged Zeolite Y by Nuclear Magnetic Resonance in Combination with Infrared Spectroscopy. Journal of the American Chemical Society, 2002, 124, 3443-3456.	13.7	41
32	Sol–gel synthesis of mesostructured aluminas from chemically modified aluminum sec-butoxide using non-ionic surfactant templating. Microporous and Mesoporous Materials, 2005, 80, 173-182.	4.4	37
33	An NMR study on the adsorption and reactivity of chloroform over alkali exchanged zeolites X and Y. Physical Chemistry Chemical Physics, 1999, 1, 4529-4535.	2.8	36
34	X-Ray photoelectron spectroscopy of Ti-Beta zeolite. Microporous Materials, 1994, 3, 259-263.	1.6	33
35	NMR spectroscopy and theoretical calculations demonstrate the nature and location of active sites for the Beckmann rearrangement reaction in microporous materials. Journal of Catalysis, 2007, 249, 116-119.	6.2	33
36	Preparation, characterization and reactivity of V- and/or Co-containing AlPO-18 materials (VCoAPO-18) in the oxidative dehydrogenation of ethane. Microporous and Mesoporous Materials, 2004, 67, 215-227.	4.4	30

TERESA BLASCO

#	Article	IF	CITATIONS
37	Characterization of Ga-substituted zeolite Beta by X-ray absorption spectroscopy. Journal of Materials Chemistry, 2000, 10, 1383-1387.	6.7	29
38	Study of propane oxidation on Cu-zeolite catalysts by in-situ EPR and IR spectroscopies. Catalysis Today, 2014, 227, 123-129.	4.4	29
39	Magnetic resonance studies on V-containing, and V,Mg-containing AFI aluminophosphates. Microporous and Mesoporous Materials, 2000, 39, 219-228.	4.4	28
40	Structure-Directing Role of Molecules Containing Benzyl Rings in the Synthesis of a Large-Pore Aluminophosphate Molecular Sieve:Â An Experimental and Computational Study. Journal of Physical Chemistry B, 2005, 109, 21539-21548.	2.6	28
41	Evidence of a Cu ²⁺ –Alkane Interaction in Cu-Zeolite Catalysts Crucial for the Selective Catalytic Reduction of NO _{<i>x</i>} with Hydrocarbons. ACS Catalysis, 2017, 7, 3501-3509.	11.2	28
42	Magic angle spinning NMR investigations on amorphous aluminophosphate oxynitrides. Physical Chemistry Chemical Physics, 1999, 1, 4493-4499.	2.8	27
43	Characterization of zeolite basicity using probe molecules by means of infrared and solid state NMR spectroscopies. Catalysis Today, 2009, 143, 293-301.	4.4	27
44	Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites. Topics in Catalysis, 2018, 61, 810-832.	2.8	26
45	Fluorine-containing organic molecules as structure directing agents in the synthesis of crystalline microporous materials. Part I: Synthesis of AlPO4-5 and SAPO-5 from fluorobenzyl-pyrrolidine. Microporous and Mesoporous Materials, 2005, 78, 189-197.	4.4	25
46	Identification of Active Surface Species for Friedel–Crafts Acylation and Koch Carbonylation Reactions by in situ Solid‣tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 5138-5141.	13.8	24
47	Crystallization kinetics of SAPO-37. Zeolites, 1992, 12, 386-394.	0.5	23
48	Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules. Physical Chemistry Chemical Physics, 2010, 12, 6396.	2.8	23
49	Evolution of Mineralogical Phases by ²⁷ <scp><scp>Al</scp> </scp> and ²⁹ <scp>Si</scp> NMR in <scp>MK</scp> â€ <scp><a< scp=""><(scp><scp>OH</scp></a<></scp>) ₂ System Cured at 60ŰC Journal of the American Ceramic Society, 2013, 96, 2306-2310	3.8	22
50	Investigation on the Beckmann rearrangement reaction catalyzed by porous solids: MAS NMR and theoretical calculations. Solid State Nuclear Magnetic Resonance, 2009, 35, 120-129.	2.3	20
51	Silica supported copper and cerium oxide catalysts for ethyl acetate oxidation. Journal of Colloid and Interface Science, 2013, 404, 155-160.	9.4	20
52	Pore topology control of supported on mesoporous silicas copper and cerium oxide catalysts for ethyl acetate oxidation. Microporous and Mesoporous Materials, 2013, 180, 156-161.	4.4	20
53	Selective catalytic reduction of nitric oxide with ammonia over Fe-Cu modified highly silicated zeolites. Solid State Sciences, 2018, 84, 75-85.	3.2	20
54	Study of the Beckmann rearrangement of acetophenone oxime over porous solids by means of solid state NMR spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 5134.	2.8	19

Teresa Blasco

#	Article	IF	CITATIONS
55	Partial oxidation of hydrogen sulfide to sulfur over vanadium oxides bronzes. Catalysis Today, 2016, 259, 237-244.	4.4	18
56	Synthesis of SiVPI-5 with enhanced activity in acid catalysed reactions. Journal of the Chemical Society Chemical Communications, 1995, , 731-732.	2.0	17
57	(S)-(â^')-N-benzylpyrrolidine-2-methanol: A new and efficient structure directing agent for the synthesis of crystalline microporous aluminophosphates with AFI-type structure. Microporous and Mesoporous Materials, 2007, 100, 55-62.	4.4	17
58	Influence of Activated Art Paper Sludge‣ime Ratio on Hydration Kinetics and Mechanical Behavior in Mixtures Cured at 20°C. Journal of the American Ceramic Society, 2009, 92, 3014-3021.	3.8	17
59	Nuclear magnetic resonance studies on supported vanadium oxide catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 115, 187-193.	4.7	15
60	Electrical conductivity of a MoVTeNbO catalyst in propene oxidation measured in operando conditions. Catalysis Today, 2010, 155, 311-318.	4.4	15
61	Understanding effects of activation-treatments in K-free and K-MoVSbO bronze catalysts for propane partial oxidation. Catalysis Today, 2014, 238, 41-48.	4.4	15
62	AgY zeolite as catalyst for the selective catalytic oxidation of NH3. Microporous and Mesoporous Materials, 2021, 323, 111230.	4.4	15
63	Effect of zeolite structure on the selective catalytic reduction of NO with ammonia over Mn-Fe supported on ZSM-5, BEA, MOR and FER. Research on Chemical Intermediates, 2021, 47, 2003-2028.	2.7	14
64	In situ multinuclear solid-state NMR spectroscopy study of Beckmann rearrangement of cyclododecanone oxime in ionic liquids: The nature of catalytic sites. Journal of Catalysis, 2010, 275, 78-83.	6.2	12
65	Partial oxidation of H2S to sulfur on V-Cu-O mixed oxides bronzes. Catalysis Today, 2019, 333, 237-244.	4.4	12
66	On the performance of Fe-Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3: the influence of preparation method. Research on Chemical Intermediates, 2019, 45, 1057-1072.	2.7	12
67	On the nature of V and Mg ions in V, Mg-containing AlPO4-5 catalysts. Journal of Molecular Catalysis A, 2000, 162, 267-273.	4.8	11
68	Zeolite-driven Ag species during redox treatments and catalytic implications for SCO of NH ₃ . Journal of Materials Chemistry A, 2021, 9, 27448-27458.	10.3	11
69	A solid-state NMR study of the molecular sieve VPI–5 synthesized in the presence of a CTABr surfactant. Solid State Nuclear Magnetic Resonance, 1997, 8, 185-194.	2.3	10
70	Establishing a Molecular Mechanism for the Beckmann Rearrangement of Oximes over Microporous Molecular Sieves. Angewandte Chemie, 2005, 117, 2422-2425.	2.0	10
71	Layering of ferrierite sheets by using large co-structure directing agents: Zeolite synthesis using 1-benzyl-1-methylpyrrolidinium and tetraethylammonium. Microporous and Mesoporous Materials, 2010, 132, 375-383.	4.4	10
72	One-pot deposition of gold on hybrid TiO2 nanoparticles and catalytic application in the selective oxidation of benzyl alcohol. Materials Chemistry and Physics, 2015, 149-150, 59-68.	4.0	10

TERESA BLASCO

#	Article	IF	CITATIONS
73	Fluorine-containing organic molecules as structure-directing agents in the synthesis of crystalline microporous materials. Part II: Synthesis of all-silica zeolites from fluorine-containing derivatives of 1-benzyl-1-methyl-hexamethylenammonium cations. Microporous and Mesoporous Materials, 2006, 89, 235-245.	4.4	9
74	On the Use of CHClF ₂ as a Probe of Basic Sites in Zeolites: The Hostâ^'Guest Interactions Investigated by Multinuclear NMR. Journal of Physical Chemistry C, 2008, 112, 16961-16967.	3.1	9
75	Inelastic Neutron Scattering Study of the Aluminum and BrÃุnsted Site Location in Aluminosilicate LTA Zeolites. Journal of Physical Chemistry C, 2018, 122, 11450-11454.	3.1	9
76	Host–Guest and Guest–Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 22324-22334.	3.1	9
77	Alkali poisoning of Fe-Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3. Research on Chemical Intermediates, 2022, 48, 3415-3428.	2.7	9
78	The investigation of beta polymorphs by 19F nuclear magnetic resonance. Studies in Surface Science and Catalysis, 2004, 154, 1289-1294.	1.5	8
79	Oxidative Dehydrogenation of Ethane on Vanadium-Containing Aluminophosphates with AFI Structure. Collection of Czechoslovak Chemical Communications, 1998, 63, 1869-1883.	1.0	7
80	Fluorine-containing organic molecules as structure directing agents in the synthesis of crystalline microporous materials. Part III: Synthesis of all-silica zeolites from fluorine-containing derivatives of 1-benzyl-1-methylpyrrolidinium. Microporous and Mesoporous Materials, 2008, 114, 312-321.	4.4	7
81	Ce-promoted Fe–Cu–ZSM-5 catalyst: SCR-NO activity and hydrothermal stability. Research on Chemical Intermediates, 2021, 47, 2901-2915.	2.7	7
82	Nuclear magnetic resonance investigation on the adsorption of pyrrole over alkali-exchanged zeolites X. Studies in Surface Science and Catalysis, 2004, 154, 1769-1776.	1.5	6
83	Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites. Chemistry - A European Journal, 2019, 25, 16390-16396.	3.3	6
84	Paramagnetic oxygen complexes on RhCl3/TiO2 catalyst precursors. Journal of Molecular Structure, 1986, 143, 255-258.	3.6	4
85	Evolution of ordinary Portland cement hydration with admixtures by spectroscopic techniques. Advances in Cement Research, 2006, 18, 111-117.	1.6	4
86	Identification of Wheland-type intermediates. Nature Catalysis, 2018, 1, 8-9.	34.4	4
87	EPR study of the surface reactivity and reducibility under vacuum of a RhCl3/SrTiO3 catalyst precursor. Vacuum, 1987, 37, 469-471.	3.5	1
88	Vanadium oxide supported on mesoporous Al2O3: Preparation, characterization and reactivity. Catalysis Today, 2004, 96, 179-186.	4.4	1
89	Distribution of Fluorine and Germanium in a New Zeolite Structure ITQ-13 Studied by19F Nuclear Magnetic Resonance ChemInform, 2004, 35, no.	0.0	0
90	Characterization of LTA- and CHA- type zeolites by means of solid state NMR. Studies in Surface Science and Catalysis, 2008, 174, 989-992.	1.5	0

#	Article	IF	CITATIONS
91	A Multi-Nuclear MAS-NMR Study on the Structural Properties of Silicalite-1 Zeolite Synthesized Using N- and P-Based Organic Structure Directing Agents. Applied Sciences (Switzerland), 2021, 11, 6850.	2.5	0