Steffen Kümmel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6278654/publications.pdf

Version: 2024-02-01

28 601 15 24
papers citations h-index g-index

29 29 29 744
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Analysis of Carbon and Hydrogen Stable Isotope Ratios of Phenolic Compounds: Method Development and Biodegradation Applications. ACS ES&T Water, 2022, 2, 32-39.	4.6	5
2	Uptake and Metabolization of HCH Isomers in Trees Examined over an Annual Growth Period by Compound-Specific Isotope Analysis and Enantiomer Fractionation. Environmental Science & Emp; Technology, 2022, 56, 10120-10130.	10.0	4
3	Characterizing the biotransformation of hexachlorocyclohexanes in wheat using compound-specific stable isotope analysis and enantiomer fraction analysis. Journal of Hazardous Materials, 2021, 406, 124301.	12.4	17
4	Uptake of \hat{l}_{\pm} -HCH by wheat from the gas phase and translocation to soil analyzed by a stable carbon isotope labeling experiment. Chemosphere, 2021, 264, 128489.	8.2	10
5	Carbon, hydrogen and nitrogen stable isotope fractionation allow characterizing the reaction mechanisms of 1H-benzotriazole aqueous phototransformation. Water Research, 2021, 203, 117519.	11.3	11
6	Soil from a Hexachlorocyclohexane Contaminated Field Site Inoculates Wheat in a Pot Experiment to Facilitate the Microbial Transformation of \hat{l}^2 -Hexachlorocyclohexane Examined by Compound-Specific Isotope Analysis. Environmental Science & Eamp; Technology, 2021, 55, 13812-13821.	10.0	13
7	Multi-element isotopic evidence for monochlorobenzene and benzene degradation under anaerobic conditions in contaminated sediments. Water Research, 2021, 207, 117809.	11.3	9
8	Dual Câ \in "Cl isotope analysis for characterizing the anaerobic transformation of \hat{l}_{\pm} , \hat{l}^2 , \hat{l}^3 , and \hat{l} -hexachlorocyclohexane in contaminated aquifers. Water Research, 2020, 184, 116128.	11.3	19
9	Simultaneous Compound-Specific Analysis of δ ³³ S and δ ³⁴ S in Organic Compounds by GC-MC-ICPMS Using Medium- and Low-Mass-Resolution Modes. Analytical Chemistry, 2020, 92, 14685-14692.	6.5	11
10	Compound-Specific Isotope Analysis and Enantiomer Fractionation to Characterize the Transformation of Hexachlorocyclohexane Isomers in a Soil–Wheat Pot System. Environmental Science & Environment	10.0	22
11	Requirements for Chromium Reactors for Use in the Determination of H Isotopes in Compound-Specific Stable Isotope Analysis of Chlorinated Compounds. Analytical Chemistry, 2020, 92, 2383-2387.	6.5	8
12	Tracing organic carbon and microbial community structure in mineralogically different soils exposed to redox fluctuations. Biogeochemistry, 2019, 143, 31-54.	3.5	18
13	Individual stages of bacterial dichloromethane degradation mapped by carbon and chlorine stable isotope analysis. Journal of Environmental Sciences, 2019, 78, 147-160.	6.1	12
14	Distinct Carbon Isotope Fractionation Signatures during Biotic and Abiotic Reductive Transformation of Chlordecone. Environmental Science & Environmen	10.0	22
15	Liquid chromatography/isotope ratio mass spectrometry analysis of halogenated benzoates for characterization of the underlying degradation reaction in <i>Thauera chlorobenzoica</i> CBâ€I ^T . Rapid Communications in Mass Spectrometry, 2018, 32, 906-912.	1.5	4
16	Enrichment of ANMEâ€⊋ dominated anaerobic methanotrophy from cold seep sediment in an external ultrafiltration membrane bioreactor. Engineering in Life Sciences, 2018, 18, 368-378.	3.6	6
17	The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways. Nature Communications, 2018, 9, 239.	12.8	36
18	Calculation of Single Cell Assimilation Rates From SIP-NanoSIMS-Derived Isotope Ratios: A Comprehensive Approach. Frontiers in Microbiology, 2018, 9, 2342.	3.5	29

#	Article	IF	CITATION
19	Multi-element compound specific stable isotope analysis of chlorinated aliphatic contaminants derived from chlorinated pitches. Science of the Total Environment, 2018, 640-641, 153-162.	8.0	15
20	Carbon and hydrogen stable isotope analysis for characterizing the chemical degradation of tributyl phosphate. Chemosphere, 2018, 212, 133-142.	8.2	19
21	Validation of GC–IRMS techniques for δ13C and δ2H CSIA of organophosphorus compounds and their potential for studying the mode of hydrolysis in the environment. Analytical and Bioanalytical Chemistry, 2017, 409, 2581-2590.	3.7	26
22	Optimization of onâ€line hydrogen stable isotope ratio measurements of halogen―and sulfurâ€bearing organic compounds using elemental analyzer–chromium/highâ€temperature conversion isotope ratio mass spectrometry (EAâ€Cr/HTCâ€lRMS). Rapid Communications in Mass Spectrometry, 2017, 31, 475-484.	1.5	34
23	Recent advances in multi-element compound-specific stable isotope analysis of organohalides: Achievements, challenges and prospects for assessing environmental sources and transformation. Trends in Environmental Analytical Chemistry, 2016, 11 , 1 -8.	10.3	42
24	Hydrogen Isotope Fractionation As a Tool to Identify Aerobic and Anaerobic PAH Biodegradation. Environmental Science & Environ	10.0	28
25	Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiology Ecology, 2015, 91, .	2.7	67
26	Compound-Specific Hydrogen Isotope Analysis of Heteroatom-Bearing Compounds via Gas Chromatography–Chromium-Based High-Temperature Conversion (Cr/HTC)–Isotope Ratio Mass Spectrometry. Analytical Chemistry, 2015, 87, 9443-9450.	6.5	74
27	A PCR-based assay for the detection of anaerobic naphthalene degradation. FEMS Microbiology Letters, 2014, 354, 55-59.	1.8	18
28	Evidence for Benzylsuccinate Synthase Subtypes Obtained by Using Stable Isotope Tools. Journal of Bacteriology, 2013, 195, 4660-4667.	2.2	21