
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6278614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precisely controlled preparation of uniform nanocrystalline cellulose via microfluidic technology. Journal of Industrial and Engineering Chemistry, 2022, 106, 77-85.	2.9	8
2	Characteristics of concentrated lignocellulosic nanofibril suspensions. Cellulose, 2022, 29, 147-158.	2.4	5
3	Facile fabrication of multi superlyophobic nano soil coated-mesh surface with excellent corrosion resistance for efficient immiscible liquids separation. Separation and Purification Technology, 2022, 284, 120266.	3.9	7
4	A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe ³⁺ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. Materials Horizons, 2022, 9, 1412-1421.	6.4	53
5	Hollow Structured Kapok Fiber-Based Hierarchical Porous Biocarbons for Ultrahigh Adsorption of Organic Dyes. Industrial & Engineering Chemistry Research, 2022, 61, 4114-4124.	1.8	5
6	Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS Applied Materials & Interfaces, 2022, 14, 14640-14653.	4.0	25
7	A design with natural polysaccharide particles and cationic conditioning agent as efficient emulsifier for hair care. Carbohydrate Polymers, 2022, 286, 119311.	5.1	4
8	High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose. Carbohydrate Polymers, 2022, 288, 119371.	5.1	20
9	High-Performance and Rapid-Response Electrical Heaters Derived from Cellulose Nanofiber/Silver Nanowire Nanopapers for Portable Thermal Management. ACS Applied Materials & Interfaces, 2022, 14, 30144-30159.	4.0	17
10	Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon. Journal of Colloid and Interface Science, 2022, 625, 158-168.	5.0	34
11	Comparative study on properties of nanocellulose derived from sustainable biomass resources. Cellulose, 2022, 29, 7083-7098.	2.4	11
12	Simultaneous production of clean water and organic dye from dyeing wastewater by reusable lignin-derived porous carbon. Industrial Crops and Products, 2022, 187, 115314.	2.5	13
13	Silver nanoparticles immobilized on cellulose nanofibrils for starch-based nanocomposites with high antibacterial, biocompatible, and mechanical properties. Cellulose, 2021, 28, 855-869.	2.4	25
14	Preparation of nanocellulose in high yield via chemi-mechanical synergy. Carbohydrate Polymers, 2021, 251, 117094.	5.1	50
15	Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydrate Polymers, 2021, 251, 117117.	5.1	58
16	Lignin containing cellulose nanofibers (LCNFs): Lignin content-morphology-rheology relationships. Carbohydrate Polymers, 2021, 254, 117441.	5.1	65
17	Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydrate Polymers, 2021, 254, 117474.	5.1	50
18	Bottomâ€Up Ecofriendly Strategy for Construction of Sustainable Bacterial Cellulose Bioaerogel with Multifunctional Properties. Advanced Materials Interfaces, 2021, 8, 2002101.	1.9	17

#	Article	IF	CITATIONS
19	Isolation and rheological characterization of cellulose nanofibrils (CNFs) produced by microfluidic homogenization, ball-milling, grinding and refining. Cellulose, 2021, 28, 3389-3408.	2.4	21
20	Mechanically Flexible Carbon Aerogel with Wavy Layers and Springboard Elastic Supporting Structure for Selective Oil/Organic Solvent Recovery. ACS Applied Materials & Interfaces, 2021, 13, 15910-15924.	4.0	37
21	Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. Small, 2021, 17, e2007306.	5.2	54
22	Cellulose nanofibrils manufactured by various methods with application as paper strength additives. Scientific Reports, 2021, 11, 11918.	1.6	37
23	Structural change and redispersion characteristic of dried lignin-containing cellulose nanofibril and its reinforcement in PVA nanocomposite film. Cellulose, 2021, 28, 7749-7764.	2.4	12
24	Silver-Nanoparticle-Embedded Hybrid Nanopaper with Significant Thermal Conductivity Enhancement. ACS Applied Materials & Interfaces, 2021, 13, 36171-36181.	4.0	17
25	Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships. Cellulose, 2021, 28, 7651-7662.	2.4	13
26	Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydrate Polymers, 2021, 266, 118149.	5.1	90
27	Pickering emulsion stabilized by cellulosic fibers: Morphological properties-interfacial stabilization-rheological behavior relationships. Carbohydrate Polymers, 2021, 269, 118339.	5.1	58
28	Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for multifunctional strain sensor. Chemical Engineering Journal, 2021, 424, 130565.	6.6	55
29	Phosphotungstic acid assisted with neutral deep eutectic solvent boost corn straw pretreatment for enzymatic saccharification and lignin extraction. Industrial Crops and Products, 2021, 172, 114058.	2.5	21
30	Melamine resin-coated lignocellulose fibers with robust superhydrophobicity for highly effective oil/water separation. Separation and Purification Technology, 2021, 279, 119737.	3.9	39
31	Eco-Friendly Superhydrophobic Composites with Thermostability, UV Resistance, and Coating Transparency. ACS Applied Materials & Interfaces, 2021, 13, 61681-61692.	4.0	16
32	Cellulose nanocrystal dye as reinforcement matrix of lipstick for inhibiting color migration. Cellulose, 2020, 27, 905-913.	2.4	18
33	Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation. Green Chemistry, 2020, 22, 504-512.	4.6	95
34	Effect of lignin content on the microstructural characteristics of lignocellulose nanofibrils. Cellulose, 2020, 27, 1327-1340.	2.4	22
35	The mechanism of Cu (II) adsorption onto 2,3-dialdehyde nano-fibrillated celluloses. Carbohydrate Polymers, 2020, 230, 115631.	5.1	24
36	Synthesis of cationic acrylate copolyvidone-iodine nanoparticles with double active centers and their antibacterial application. Nanoscale, 2020, 12, 21940-21950.	2.8	24

#	Article	IF	CITATIONS
37	Scalable and Robust Bacterial Cellulose Carbon Aerogels as Reusable Absorbents for High-Efficiency Oil/Water Separation. ACS Applied Bio Materials, 2020, 3, 7483-7491.	2.3	45
38	Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohydrate Polymers, 2020, 247, 116721.	5.1	37
39	Efficient fractionation of cellulose nanofibers using spiral microchannel. Cellulose, 2020, 27, 4029-4041.	2.4	6
40	Catalytic transformation of cellulose into short rod-like cellulose nanofibers and platform chemicals over lignin-based solid acid. Applied Catalysis B: Environmental, 2020, 268, 118732.	10.8	36
41	Distribution analysis of cellulose nanofibrils in paper handsheets: Dye-labeled Method. Carbohydrate Polymers, 2020, 239, 116226.	5.1	6
42	Endoglucanase recycling for disintegrating cellulosic fibers to fibrils. Carbohydrate Polymers, 2019, 223, 115052.	5.1	7
43	Flexible and Hierarchical 3D Interconnected Silver Nanowires/Cellulosic Paper-Based Thermoelectric Sheets with Superior Electrical Conductivity and Ultrahigh Thermal Dispersion Capability. ACS Applied Materials & Interfaces, 2019, 11, 39088-39099.	4.0	39
44	A water solvent-assisted condensation polymerization strategy of superhydrophobic lignocellulosic fibers for efficient oil/water separation. Journal of Materials Chemistry A, 2019, 7, 16447-16457.	5.2	61
45	Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydrate Polymers, 2019, 222, 114912.	5.1	106
46	Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell. Bioresource Technology, 2019, 282, 228-235.	4.8	47
47	Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration. Carbohydrate Polymers, 2019, 207, 44-51.	5.1	47
48	Controlled Release and Long-Term Antibacterial Activity of Dialdehyde Nanofibrillated Cellulose/Silver Nanoparticle Composites. ACS Sustainable Chemistry and Engineering, 2019, 7, 1146-1158.	3.2	85
49	Effect of retention rate of fluorescent cellulose nanofibrils on paper properties and structure. Carbohydrate Polymers, 2018, 186, 73-81.	5.1	31
50	Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure. ACS Nano, 2018, 12, 5816-5825.	7.3	273
51	Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment. Bioresource Technology, 2018, 267, 426-430.	4.8	43
52	An effective method for determining the retention and distribution of cellulose nanofibrils in paper handsheets by dye labeling. Tappi Journal, 2018, 17, 157-164.	0.2	6
53	Effects of colloidal complexes formation between resveratrol and deamidated gliadin on the bioaccessibility and lipid oxidative stability. Food Hydrocolloids, 2017, 69, 466-472.	5.6	41
54	Photochromic paper from wood pulp modification via layer-by-layer assembly of pulp fiber/chitosan/spiropyran. Carbohydrate Polymers, 2017, 157, 704-710.	5.1	36

#	Article	IF	CITATIONS
55	Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals. Carbohydrate Polymers, 2017, 175, 105-112.	5.1	27
56	Efficient Degradation of Methylene Blue by the Nano TiO2-functionalized Graphene Oxide Nanocomposite Photocatalyst for Wastewater Treatment. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	14
57	Thermal Dynamics and a Comparison of the Thermal Stability of Various Non-Wood Pulps. BioResources, 2015, 11, .	0.5	1
58	Photoresponsive nanogels synthesized using spiropyraneâ€modified pullulan as potential drug carriers. Journal of Applied Polymer Science, 2014, 131, .	1.3	9
59	Stimulus-responsive polymeric micelles for the light-triggered release of drugs. Carbohydrate Polymers, 2014, 103, 510-519.	5.1	39