Ning Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6278528/publications.pdf

Version: 2024-02-01

			361045		525886	
	28	2,738	20		27	
	papers	citations	h-index		g-index	
ľ				. '		
	29	29	29		2932	
	all docs	docs citations	times ranked		citing authors	

#	Article	lF	CITATIONS
1	An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape―and Molecular Architecture Reconfiguration. Angewandte Chemie - International Edition, 2022, 61, e202109941.	7.2	15
2	An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape―and Molecular Architecture Reconfiguration. Angewandte Chemie, 2022, 134, .	1.6	3
3	Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening. Nature Communications, 2022, 13, 397.	5.8	32
4	Converse two-way shape memory effect through a dynamic covalent network design. Journal of Materials Chemistry A, 2022, 10, 10350-10354.	5.2	10
5	Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chemical Reviews, 2021, 121, 1716-1745.	23.0	587
6	<scp>UV</scp> curable microâ€structured shape memory epoxy with tunable performance. Journal of Applied Polymer Science, 2021, 138, 51319.	1.3	2
7	Transparent origami glass. Nature Communications, 2021, 12, 4261.	5.8	24
8	Ultrafast Digital Fabrication of Designable Architectured Liquid Crystalline Elastomer. Advanced Materials, 2021, 33, e2105597.	11.1	37
9	A thermadapt epoxy based on borate ester crosslinking and its carbon fiber composite as rapidly processable prepreg. Composites Communications, 2021, 28, 100979.	3.3	17
10	Structural tuning of polycaprolactone based thermadapt shape memory polymer. Polymer Chemistry, 2020, 11, 1369-1374.	1.9	57
11	On demand shape memory polymer via light regulated topological defects in a dynamic covalent network. Nature Communications, 2020, 11, 4257.	5.8	82
12	Remotely Triggered Assembly of 3D Mesostructures Through Shapeâ€Memory Effects. Advanced Materials, 2019, 31, e1905715.	11.1	42
13	Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Science Advances, 2019, 5, eaaw1066.	4.7	180
14	Grain Boundaries of Self-Assembled Porous Polymer Films for Unclonable Anti-Counterfeiting. ACS Applied Polymer Materials, 2019, 1, 47-53.	2.0	24
15	Mechanoâ€Plastic Pyrolysis of Dynamic Covalent Polymer Network toward Hierarchical 3D Ceramics. Advanced Materials, 2019, 31, e1807326.	11.1	46
16	Freestanding 3D Mesostructures, Functional Devices, and Shapeâ€Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019, 31, e1805615.	11.1	105
17	Bio-inspired 3D neural electrodes for the peripheral nerves stimulation using shape memory polymers. , $2018, \ldots$		1
18	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	1.9	195

#	Article	IF	CITATIONS
19	Healable, Reconfigurable, Reprocessable Thermoset Shape Memory Polymer with Highly Tunable Topological Rearrangement Kinetics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22077-22082.	4.0	180
20	Catalyst-Free Thermoset Polyurethane with Permanent Shape Reconfigurability and Highly Tunable Triple-Shape Memory Performance. ACS Macro Letters, 2017, 6, 326-330.	2.3	198
21	A Metallosupramolecular Shapeâ€Memory Polymer with Gradient Thermal Plasticity. Angewandte Chemie - International Edition, 2017, 56, 12599-12602.	7.2	76
22	A Metallosupramolecular Shapeâ€Memory Polymer with Gradient Thermal Plasticity. Angewandte Chemie, 2017, 129, 12773-12776.	1.6	22
23	Thermoset Shapeâ€Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angewandte Chemie - International Edition, 2016, 55, 11421-11425.	7.2	460
24	Thermoset Shapeâ€Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angewandte Chemie, 2016, 128, 11593-11597.	1.6	64
25	Direct Laser Writing-Based Programmable Transfer Printing via Bioinspired Shape Memory Reversible Adhesive. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35628-35633.	4.0	97
26	Innentitelbild: Thermoset Shapeâ€Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation (Angew. Chem. 38/2016). Angewandte Chemie, 2016, 128, 11474-11474.	1.6	1
27	Shape memory polymers for flexible electronics. Scientia Sinica: Physica, Mechanica Et Astronomica, 2016, 46, 044602.	0.2	6
28	High strain epoxy shape memory polymer. Polymer Chemistry, 2015, 6, 3046-3053.	1.9	173