Ning Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6278528/publications.pdf Version: 2024-02-01

NING THENC

#	Article	IF	CITATIONS
1	Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chemical Reviews, 2021, 121, 1716-1745.	23.0	587
2	Thermoset Shapeâ€Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angewandte Chemie - International Edition, 2016, 55, 11421-11425.	7.2	460
3	Catalyst-Free Thermoset Polyurethane with Permanent Shape Reconfigurability and Highly Tunable Triple-Shape Memory Performance. ACS Macro Letters, 2017, 6, 326-330.	2.3	198
4	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	1.9	195
5	Healable, Reconfigurable, Reprocessable Thermoset Shape Memory Polymer with Highly Tunable Topological Rearrangement Kinetics. ACS Applied Materials & Interfaces, 2017, 9, 22077-22082.	4.0	180
6	Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Science Advances, 2019, 5, eaaw1066.	4.7	180
7	High strain epoxy shape memory polymer. Polymer Chemistry, 2015, 6, 3046-3053.	1.9	173
8	Freestanding 3D Mesostructures, Functional Devices, and Shapeâ€Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019, 31, e1805615.	11.1	105
9	Direct Laser Writing-Based Programmable Transfer Printing via Bioinspired Shape Memory Reversible Adhesive. ACS Applied Materials & Interfaces, 2016, 8, 35628-35633.	4.0	97
10	On demand shape memory polymer via light regulated topological defects in a dynamic covalent network. Nature Communications, 2020, 11, 4257.	5.8	82
11	A Metallosupramolecular Shapeâ€Memory Polymer with Gradient Thermal Plasticity. Angewandte Chemie - International Edition, 2017, 56, 12599-12602.	7.2	76
12	Thermoset Shapeâ€Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angewandte Chemie, 2016, 128, 11593-11597.	1.6	64
13	Structural tuning of polycaprolactone based thermadapt shape memory polymer. Polymer Chemistry, 2020, 11, 1369-1374.	1.9	57
14	Mechanoâ€Plastic Pyrolysis of Dynamic Covalent Polymer Network toward Hierarchical 3D Ceramics. Advanced Materials, 2019, 31, e1807326.	11.1	46
15	Remotely Triggered Assembly of 3D Mesostructures Through Shapeâ€Memory Effects. Advanced Materials, 2019, 31, e1905715.	11.1	42
16	Ultrafast Digital Fabrication of Designable Architectured Liquid Crystalline Elastomer. Advanced Materials, 2021, 33, e2105597.	11.1	37
17	Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening. Nature Communications, 2022, 13, 397.	5.8	32
18	Grain Boundaries of Self-Assembled Porous Polymer Films for Unclonable Anti-Counterfeiting. ACS Applied Polymer Materials, 2019, 1, 47-53.	2.0	24

NING ZHENG

#	Article	IF	CITATIONS
19	Transparent origami glass. Nature Communications, 2021, 12, 4261.	5.8	24
20	A Metallosupramolecular Shapeâ€Memory Polymer with Gradient Thermal Plasticity. Angewandte Chemie, 2017, 129, 12773-12776.	1.6	22
21	A thermadapt epoxy based on borate ester crosslinking and its carbon fiber composite as rapidly processable prepreg. Composites Communications, 2021, 28, 100979.	3.3	17
22	An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape―and Molecular Architecture Reconfiguration. Angewandte Chemie - International Edition, 2022, 61, e202109941.	7.2	15
23	Converse two-way shape memory effect through a dynamic covalent network design. Journal of Materials Chemistry A, 2022, 10, 10350-10354.	5.2	10
24	Shape memory polymers for flexible electronics. Scientia Sinica: Physica, Mechanica Et Astronomica, 2016, 46, 044602.	0.2	6
25	An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape―and Molecular Architecture Reconfiguration. Angewandte Chemie, 2022, 134, .	1.6	3
26	<scp>UV</scp> curable microâ€structured shape memory epoxy with tunable performance. Journal of Applied Polymer Science, 2021, 138, 51319.	1.3	2
27	Innentitelbild: Thermoset Shapeâ€Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation (Angew. Chem. 38/2016). Angewandte Chemie, 2016, 128, 11474-11474.	1.6	1
28	Bio-inspired 3D neural electrodes for the peripheral nerves stimulation using shape memory polymers. , 2018, , .		1