Maya Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6278338/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chemistry, 2014, 16, 4734-4739.	9.0	154
2	Formic Acidâ€Based Liquid Organic Hydrogen Carrier System with Heterogeneous Catalysts. Advanced Sustainable Systems, 2018, 2, 1700161.	5.3	141
3	Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide–water: a tunable approach to dimethylfuran selectivity. Green Chemistry, 2014, 16, 1543.	9.0	121
4	Hydrogenation of Nitrobenzene with Supported Transition Metal Catalysts in Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2004, 346, 661-668.	4.3	68
5	Interconversion between CO ₂ and HCOOH under Basic Conditions Catalyzed by PdAu Nanoparticles Supported by Amine-Functionalized Reduced Graphene Oxide as a Dual Catalyst. ACS Catalysis, 2018, 8, 5355-5362.	11.2	58
6	An efficient cleavage of the aryl ether C–O bond in supercritical carbon dioxide–water. Chemical Communications, 2013, 49, 4567.	4.1	52
7	Rhodium-mediated hydrogenolysis/hydrolysis of the aryl ether bond in supercritical carbon dioxide/water: an experimental and theoretical approach. Catalysis Science and Technology, 2015, 5, 1532-1539.	4.1	47
8	Dehydrogenation of 5-hydroxymethylfurfural to diformylfuran in compressed carbon dioxide: an oxidant free approach. Green Chemistry, 2017, 19, 1315-1326.	9.0	47
9	In situ synthesized Pd nanoparticles supported on B-MCM-41: an efficient catalyst for hydrogenation of nitroaromatics in supercritical carbon dioxide. Green Chemistry, 2012, 14, 3415.	9.0	44
10	Completely selective hydrogenation of trans-cinnamaldehyde to cinnamyl alcohol promoted by a Ru–Pt bimetallic catalyst supported on MCM-48 in supercritical carbon dioxide. New Journal of Chemistry, 2003, 27, 510-513.	2.8	42
11	An attempt to achieve the direct hydrogenolysis of tetrahydrofurfuryl alcohol in supercritical carbon dioxide. Catalysis Science and Technology, 2011, 1, 1466.	4.1	42
12	Accelerated decarbonylation of 5-hydroxymethylfurfural in compressed carbon dioxide: a facile approach. Green Chemistry, 2018, 20, 2345-2355.	9.0	36
13	Pd-catalyzed completely selective hydrogenation of conjugated and isolated Cî€C of citral (3,7-dimethyl-2, 6-octadienal) in supercritical carbon dioxide. Green Chemistry, 2004, 6, 114-118.	9.0	33
14	Automatic high-pressure hydrogen generation from formic acid in the presence of nano-Pd heterogeneous catalysts at mild temperatures. Sustainable Energy and Fuels, 2017, 1, 1049-1055.	4.9	33
15	Hydrogenation of aniline to cyclohexylamine in supercritical carbon dioxide: Significance of phase behaviour. Applied Catalysis A: General, 2011, 396, 186-193.	4.3	32
16	Rapid Hydrogenation of Aromatic Nitro Compounds in Supercritical Carbon Dioxide: Mechanistic Implications <i>via</i> Experimental and Theoretical Investigations. Advanced Synthesis and Catalysis, 2012, 354, 2009-2018.	4.3	25
17	An Efficient Hydrogenation of Dinitrile to Aminonitrile in Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2010, 352, 2394-2398.	4.3	21
18	Sequential hydrogen production system from formic acid and H ₂ /CO ₂ separation under high-pressure conditions. Sustainable Energy and Fuels, 2018, 2, 1719-1725.	4.9	21

MAYA CHATTERJEE

#	Article	IF	CITATIONS
19	Hydrogenation of citral in supercritical CO2 using a heterogeneous Ni(ii) catalyst. Green Chemistry, 2006, 8, 445.	9.0	19
20	Preparation and characterization of PdO nanoparticles on trivalent metal (B, Al and Ga) substituted MCM-41: Excellent catalytic activity in supercritical carbon dioxide. Journal of Colloid and Interface Science, 2014, 420, 15-26.	9.4	19
21	Continuous process for fabrication of size controlled polyimide nanoparticles using microfluidic system. Chemical Communications, 2010, 46, 7214.	4.1	16
22	An exceptionally rapid and selective hydrogenation of 2-cyclohexen-1-one in supercritical carbon dioxide. Chemical Communications, 2009, , 701-703.	4.1	9
23	Defining Pt-compressed CO ₂ synergy for selectivity control of furfural hydrogenation. RSC Advances, 2018, 8, 20190-20201.	3.6	9
24	Continuous Fabrication of Novel Polyimide Nanoparticles Confining Highly Dispersed Gold Nanoparticles by a Multistep Microfluidic Reaction System and Their Catalytic Application. Chemistry Letters, 2012, 41, 447-449.	1.3	5
25	Preparation of silica sphere with porous structure in supercritical carbon dioxide. Journal of Colloid and Interface Science, 2010, 348, 57-64.	9.4	4
26	Production of lactic acid mediated by compressed carbon dioxide on heterogeneous Ni(<scp>ii</scp>) catalysts: a facile approach. Green Chemistry, 2022, 24, 6145-6155.	9.0	3
27	Selectivity controlled transformation of carbon dioxide into a versatile bi-functional multi-carbon oxygenate using a physically mixed ruthenium–iridium catalyst. Catalysis Science and Technology, 2021, 11, 4719-4731.	4.1	2
28	Rapid and continuous fabrication of TiO2 nanoparticles encapsulated by polyimide fine particles using a multistep flow-system and their application. RSC Advances, 2021, 11, 2083-2087.	3.6	1