Yuanchao Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6277894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging roles of <scp>RNA</scp> – <scp>RNA</scp> interactions in transcriptional regulation. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1712.	3.2	8
2	Architecture of RNA–RNA interactions. Current Opinion in Genetics and Development, 2022, 72, 138-144.	1.5	6
3	Recent advances in RNA structurome. Science China Life Sciences, 2022, 65, 1285-1324.	2.3	22
4	Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nature Biotechnology, 2021, 39, 836-845.	9.4	108
5	Climate-driven flyway changes and memory-based long-distance migration. Nature, 2021, 591, 259-264.	13.7	49
6	SRSF1 serves as a critical posttranscriptional regulator at the late stage of thymocyte development. Science Advances, 2021, 7, .	4.7	26
7	Global in situ profiling of RNA-RNA spatial interactions with RIC-seq. Nature Protocols, 2021, 16, 2916-2946.	5.5	21
8	The architecture of the SARS-CoV-2 RNA genome inside virion. Nature Communications, 2021, 12, 3917.	5.8	122
9	Global profiling of RNA-binding protein target sites by LACE-seq. Nature Cell Biology, 2021, 23, 664-675.	4.6	40
10	Translational control by DHX36 binding to 5′UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nature Communications, 2021, 12, 5043.	5.8	36
11	SRSF1 plays a critical role in invariant natural killer T cell development and function. Cellular and Molecular Immunology, 2021, 18, 2502-2515.	4.8	12
12	RIC-seq for global in situ profiling of RNA–RNA spatial interactions. Nature, 2020, 582, 432-437.	13.7	176
13	Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature, 2020, 582, 550-556.	13.7	316
14	R-loops coordinate with SOX2 in regulating reprogramming to pluripotency. Science Advances, 2020, 6, eaba0777.	4.7	36
15	Noncoding RNA: from dark matter to bright star. Science China Life Sciences, 2020, 63, 463-468.	2.3	32
16	Enhancer RNA: biogenesis, function, and regulation. Essays in Biochemistry, 2020, 64, 883-894.	2.1	35
17	RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proceedings of the United States of America, 2019, 116, 6172-6180.	3.3	32
18	Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Developmental Cell, 2018. 44. 348-361.e7.	3.1	121

ΥUANCHAO **Χ**UE

#	Article	IF	CITATIONS
19	A novel class of microRNA-recognition elements that function only within open reading frames. Nature Structural and Molecular Biology, 2018, 25, 1019-1027.	3.6	134
20	RNA-binding protein DDX1 is responsible for fatty acid-mediated repression of insulin translation. Nucleic Acids Research, 2018, 46, 12052-12066.	6.5	27
21	PTB/nPTB: master regulators of neuronal fate in mammals. Biophysics Reports, 2018, 4, 204-214.	0.2	55
22	Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST). Journal of Biological Chemistry, 2018, 293, 16851-16861.	1.6	14
23	The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Research, 2018, 28, 981-995.	5.7	37
24	Function Beyond RNA Splicing for RBFox Family Members in Heart. Journal of Molecular and Cellular Cardiology, 2017, 112, 146-147.	0.9	1
25	RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes. Molecular Cell, 2016, 62, 875-889.	4.5	66
26	Emerging roles of non-coding RNAs in epigenetic regulation. Science China Life Sciences, 2016, 59, 227-235.	2.3	53
27	Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nature Neuroscience, 2016, 19, 807-815.	7.1	88
28	Directly converted patient-specific induced neurons mirror the neuropathology of FUS with disrupted nuclear localization in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2016, 11, 8.	4.4	33
29	Patient fibroblasts-derived induced neurons demonstrate autonomous neuronal defects in adult-onset Krabbe disease. Oncotarget, 2016, 7, 74496-74509.	0.8	26
30	MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Research, 2015, 25, 193-207.	5.7	266
31	Oncogenic miR-17/20a Forms a Positive Feed-forward Loop with the p53 Kinase DAPK3 to Promote Tumorigenesis. Journal of Biological Chemistry, 2015, 290, 19967-19975.	1.6	21
32	Repression of the Central Splicing Regulator RBFox2 Is Functionally Linked to Pressure Overload-Induced Heart Failure. Cell Reports, 2015, 10, 1521-1533.	2.9	74
33	Direct Reprogramming of Huntington's Disease Patient Fibroblasts into Neuron-Like Cells Leads to Abnormal Neurite Outgrowth, Increased Cell Death, and Aggregate Formation. PLoS ONE, 2014, 9, e109621.	1.1	28
34	Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Research, 2014, 24, 680-700.	5.7	344
35	Induction of Retinal Progenitors and Neurons from Mammalian Müller Glia under Defined Conditions. Journal of Biological Chemistry, 2014, 289, 11945-11951.	1.6	30
36	CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration. Cell, 2014, 157, 651-663.	13.5	228

ΥUANCHAO XUE

#	Article	IF	CITATIONS
37	WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature, 2014, 511, 358-361.	13.7	193
38	MicroRNA Directly Enhances Mitochondrial Translation during Muscle Differentiation. Cell, 2014, 158, 607-619.	13.5	385
39	Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-Regulated MicroRNA Circuits. Cell, 2013, 152, 82-96.	13.5	508
40	Genome-wide Analysis of PTB-RNA Interactions Reveals a Strategy Used by the General Splicing Repressor to Modulate Exon Inclusion or Skipping. Molecular Cell, 2009, 36, 996-1006.	4.5	429
41	PTB/nPTB switch: a post-transcriptional mechanism for programming neuronal differentiation: Figure 1 Genes and Development, 2007, 21, 1573-1577.	2.7	50