
José M Assaf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6277667/publications.pdf Version: 2024-02-01

LOSÃO M ASSAF

#	Article	IF	CITATIONS
1	High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, 2004, 134, 27-32.	7.8	224
2	Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. Journal of Power Sources, 2003, 124, 99-103.	7.8	207
3	Structural features of La1â^'xCexNiO3 mixed oxides and performance for the dry reforming of methane. Applied Catalysis A: General, 2006, 311, 94-104.	4.3	206
4	Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Applied Catalysis A: General, 2010, 377, 181-190.	4.3	147
5	Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane. Catalysis Today, 2003, 85, 59-68.	4.4	139
6	Autothermal reforming of methane over Ni/γ-Al2O3 catalysts: the enhancement effect of small quantities of noble metals. Journal of Power Sources, 2004, 130, 106-110.	7.8	112
7	Dry reforming of methane on Ni–Mg–Al nano-spheroid oxide catalysts prepared by the sol–gel method from hydrotalcite-like precursors. Applied Surface Science, 2013, 280, 876-887.	6.1	112
8	Catalytic evaluation of perovskite-type oxide LaNi1â^'xRuxO3 in methane dry reforming. Catalysis Today, 2008, 133-135, 129-135.	4.4	106
9	Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1â ^{°°} xCexNiO3 perovskite-type oxides. Applied Catalysis B: Environmental, 2012, 121-122, 1-9.	20.2	96
10	Ni–Fe Catalysts Based on Perovskite-type Oxides for Dry Reforming of Methane to Syngas. Catalysis Letters, 2006, 108, 63-70.	2.6	89
11	Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals. Journal of Power Sources, 2009, 190, 525-533.	7.8	86
12	Influence of the Supramolecular Structure and Physicochemical Properties of Cellulose on Its Dissolution in a Lithium Chloride/N,N-Dimethylacetamide Solvent System. Biomacromolecules, 2005, 6, 2638-2647.	5.4	84
13	Methane conversion reactions on Ni catalysts promoted with Rh: Influence of support. Applied Catalysis A: General, 2011, 400, 156-165.	4.3	74
14	La1â^'x Ca x NiO3 Perovskite Oxides: Characterization and Catalytic Reactivity in Dry Reforming of Methane. Catalysis Letters, 2008, 124, 195-203.	2.6	71
15	Effect of nature of ceria support in CuO/CeO2 catalyst for PROX-CO reaction. Fuel, 2012, 97, 245-252.	6.4	63
16	Reforming of a model biogas on Ni and Rh–Ni catalysts: Effect of adding La. Fuel Processing Technology, 2012, 102, 124-131.	7.2	56
17	Ni/Al2O3catalysts: effects of the promoters Ce, La and Zr on the methane steam and oxidative reforming reactions. Catalysis Science and Technology, 2013, 3, 635-643.	4.1	56
18	MnO2 nanowires decorated with Au ultrasmall nanoparticles for the green oxidation of silanes and hydrogen production under ultralow loadings. Applied Catalysis B: Environmental, 2016, 184, 35-43.	20.2	55

#	Article	IF	CITATIONS
19	CuO–CeO2 catalysts synthesized in one-step: Characterization and PROX performance. International Journal of Hydrogen Energy, 2012, 37, 5498-5507.	7.1	53
20	Reforming of a model sulfur-free biogas on Ni catalysts supported on Mg(Al)O derived from hydrotalcite precursors: Effect of La and Rh addition. Biomass and Bioenergy, 2014, 60, 8-17.	5.7	48
21	Autothermal reforming of methane over Ni/γ-Al2O3 promoted with PdThe effect of the Pd source in activity, temperature profile of reactor and in ignition. Applied Catalysis A: General, 2008, 334, 243-250.	4.3	46
22	Autoreduction of promoted Ni/γ-Al2O3 during autothermal reforming of methane. Journal of Power Sources, 2005, 139, 176-181.	7.8	45
23	Hydrogen production and purification from the water–gas shift reaction on CuO/CeO2–TiO2 catalysts. Applied Energy, 2013, 112, 52-59.	10.1	45
24	A comparison between copper and nickel-based catalysts obtained from hydrotalcite-like precursors for WGSR. Catalysis Today, 2011, 171, 290-296.	4.4	44
25	One-Pot Synthesis of Mesoporous Ni–Ti–Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol. ACS Applied Materials & Interfaces, 2017, 9, 6079-6092.	8.0	44
26	Effect of ionic liquid in Ni/ZrO2 catalysts applied to syngas production by methane tri-reforming. International Journal of Hydrogen Energy, 2019, 44, 9316-9327.	7.1	44
27	Methane steam reforming on supported and non-supported molybdenum carbides. Chemical Engineering Journal, 2005, 106, 97-103.	12.7	43
28	Study of Co/CeO 2 -Î ³ -Al 2 O 3 catalysts for steam and oxidative reforming of ethanol for hydrogen production. Fuel Processing Technology, 2014, 128, 134-145.	7.2	43
29	Controlling Size, Morphology, and Surface Composition of AgAu Nanodendrites in 15 s for Improved Environmental Catalysis under Low Metal Loadings. ACS Applied Materials & Interfaces, 2015, 7, 25624-25632.	8.0	42
30	The advantages of air addition on the methane steam reforming over Ni/?-Al2O3. Journal of Power Sources, 2004, 137, 264-268.	7.8	39
31	Double bed reactor for the simultaneous steam reforming of ethanol and water gas shift reactions. International Journal of Hydrogen Energy, 2006, 31, 1204-1209.	7.1	38
32	The enhanced activity of Ca/MgAl mixed oxide for transesterification. Fuel Processing Technology, 2014, 125, 73-78.	7.2	38
33	Synthesis and Characterization of LaNiO3, LaNi(1-x)Fe xO3 andLaNi(1-x)Co xO3 Perovskite Oxides for Catalysis Application. Materials Research, 2002, 5, 329-335.	1.3	37
34	Novel supports for nickel-based catalysts for the partial oxidation of methane. Catalysis Today, 2010, 149, 240-247.	4.4	37
35	Study of CuO/CeO2 catalyst with for preferential CO oxidation reaction in hydrogen-rich feed (PROX-CO). Applied Catalysis A: General, 2012, 431-432, 25-32.	4.3	37
36	Effect of lanthanum on the properties of copper, cerium and zirconium catalysts for preferential oxidation of carbon monoxide. Catalysis Today, 2014, 228, 40-50.	4.4	36

#	Article	IF	CITATIONS
37	Syngas for Fischer-Tropsch synthesis by methane tri-reforming using nickel supported on MgAl2O4 promoted with Zr, Ce and Ce-Zr. Applied Surface Science, 2019, 481, 747-760.	6.1	36
38	Support influence on the basicity promotion of lithium-based mixed oxides for transesterification reaction. Fuel, 2013, 103, 632-638.	6.4	35
39	Effect of gadolinium on the catalytic properties of iron oxides for WGSR. Catalysis Today, 2013, 213, 127-134.	4.4	32
40	CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step. Molecular Catalysis, 2018, 458, 297-306.	2.0	32
41	Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. Journal of Colloid and Interface Science, 2018, 530, 282-291.	9.4	32
42	Hydrogen purification for fuel cell using CuO/CeO2–Al2O3 catalyst. Journal of Power Sources, 2011, 196, 747-753.	7.8	31
43	Hydrotalcites derived catalysts for syngas production from biogas reforming: Effect of nickel and cerium load. Catalysis Today, 2017, 289, 78-88.	4.4	31
44	Methane tri-reforming for synthesis gas production using Ni/CeZrO2/MgAl2O4 catalysts: Effect of Zr/Ce molar ratio. International Journal of Hydrogen Energy, 2020, 45, 8418-8432.	7.1	31
45	MgAlLi Mixed Oxides Derived from Hydrotalcite for Catalytic Transesterification. Catalysis Letters, 2011, 141, 1316-1323.	2.6	29
46	Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics. Chemical Engineering Journal, 2022, 427, 130947.	12.7	29
47	X-ZrO2 addition (X= Ce, La, Y and Sm) on Ni/MgAl2O4 applied to methane tri-reforming for syngas production. Journal of CO2 Utilization, 2019, 33, 273-283.	6.8	28
48	The effect of metal content on nickel-based catalysts obtained from hydrotalcites for WGSR in one step. International Journal of Hydrogen Energy, 2014, 39, 815-828.	7.1	24
49	Hollow AgPt/SiO ₂ nanomaterials with controlled surface morphologies: is the number of Pt surface atoms imperative to optimize catalytic performances?. Catalysis Science and Technology, 2016, 6, 2162-2170.	4.1	24
50	Active copper species of co-precipitated copper-ceria catalysts in the CO-PROX reaction: An in situ XANES and DRIFTS study. Catalysis Today, 2021, 381, 42-49.	4.4	24
51	Hydrogen production from oxidative reforming of methane on Ni/γ-Al2O3 catalysts: Effect of support promotion with La, La–Ce and La–Zr. Fuel Processing Technology, 2014, 127, 97-104.	7.2	23
52	Performance of CuO–CeO2 Catalysts with Low Copper Content in CO Preferential Oxidation Reaction. Catalysis Letters, 2011, 141, 316-321.	2.6	22
53	Effect of Mg substitution on LaTi _{1â^'x} Mg _x O _{3+Î′} catalysts for improving the C2 selectivity of the oxidative coupling of methane. Catalysis Science and Technology, 2021, 11, 283-296.	4.1	20
54	Syngas production by methane tri-reforming: Effect of Ni/CeO2 synthesis method on oxygen vacancies and coke formation. Journal of CO2 Utilization, 2022, 56, 101853.	6.8	20

#	Article	IF	CITATIONS
55	Surface interaction of CO2/H2 mixture on mesoporous ZrO2: Effect of crystalline polymorph phases. Applied Surface Science, 2019, 496, 143671.	6.1	19
56	New insights about the effect of the synthesis method on the CuO CeO2 redox properties and catalytic performance towards CO-PROX reaction for fuel cell applications. Journal of Environmental Management, 2019, 242, 272-278.	7.8	19
57	Catalytic hydrogenation of CO 2 into methanol and dimethyl ether over Cu-X/V-Al PILC (X = Ce and Nb) catalysts. Catalysis Today, 2017, 289, 173-180.	4.4	18
58	Steam reforming of ethanol for hydrogen production on Co/CeO2–ZrO2 catalysts prepared by polymerization method. Materials Chemistry and Physics, 2012, 132, 1029-1034.	4.0	17
59	Low-pressure hydrogenation of CO2 to methanol over Ni-Ga alloys synthesized by a surfactant-assisted co-precipitation method and a proposed mechanism by DRIFTS analysis. Catalysis Today, 2021, 381, 261-271.	4.4	17
60	Adjusting Process Variables in Methane Tri-reforming to Achieve Suitable Syngas Quality and Low Coke Deposition. Energy & Fuels, 2020, 34, 16522-16531.	5.1	16
61	CO preferential oxidation reaction aspects in a nanocrystalline CuO/CeO2 catalyst. Catalysis Today, 2020, 344, 124-128.	4.4	15
62	The enhanced activity of base metal modified MgAl mixed oxides from sol-gel hydrotalcite for ethylic transesterification. Renewable Energy, 2020, 146, 1984-1990.	8.9	15
63	In situ study of low-temperature dry reforming of methane over La2Ce2O7 and LaNiO3 mixed oxides. Applied Catalysis B: Environmental, 2022, 315, 121528.	20.2	15
64	The active phase distribution in Ni/Al2O3 catalysts and mathematical modeling of the impregnation process. Chemical Engineering Journal, 2003, 94, 93-98.	12.7	14
65	Produção de hidrogênio a partir da reforma a vapor de etanol utilizando catalisadores Cu/Ni/gama-Al2o3. Quimica Nova, 2007, 30, 339-345.	0.3	14
66	Promoting effects of indium doped Cu/CeO ₂ catalysts on CO ₂ hydrogenation to methanol. Reaction Chemistry and Engineering, 2022, 7, 1589-1602.	3.7	14
67	Catalytic Properties of AgPt Nanoshells as a Function of Size: Larger Outer Diameters Lead to Improved Performances. Langmuir, 2016, 32, 9371-9379.	3.5	13
68	OXIDATIVE-REFORMING OF METHANE AND PARTIAL OXIDATION OF METHANE REACTIONS OVER NiO/PrO2/ZrO2 CATALYSTS: EFFECT OF NICKEL CONTENT. Brazilian Journal of Chemical Engineering, 2016, 33, 627-636.	1.3	12
69	MATHEMATICAL MODELLING OF METHANE STEAM REFORMING IN A MEMBRANE REACTOR: AN ISOTHERMIC MODEL. Brazilian Journal of Chemical Engineering, 1998, 15, 160-166.	1.3	12
70	Exploiting oxidative coupling of methane performed over La ₂ (Ce _{1â^x} Mg _x) ₂ O _{7â^î^} catalysts with disordered defective cubic fluorite structure. Catalysis Science and Technology, 2021, 11, 4471-4481.	4.1	11
71	Hydrogen purification over lanthanum-doped iron oxides by WGSR. Catalysis Today, 2017, 296, 262-271.	4.4	11
72	Efeito do teor metálico em catalisadores Co/Al2O3 aplicados à reação de reforma a vapor de etanol. Quimica Nova, 2005, 28, 587-590.	0.3	10

#	Article	IF	CITATIONS
73	Lithium and calcium based perovskite type oxides for ethylic transesterification. Catalysis Today, 2017, 279, 177-186.	4.4	10
74	NiMgAlCe Catalysts Applied to Reforming of a Model Biogas for Syngas Production. Catalysis Letters, 2018, 148, 979-991.	2.6	10
75	Effect of the Synthesis Method on Physicochemical Properties and Performance of Cu/ZnO/Nb ₂ O ₅ Catalysts for CO ₂ Hydrogenation to Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 18750-18758.	3.7	10
76	Systematic investigation of the effect of oxygen mobility on CO oxidation over AgPt nanoshells supported on CeO2, TiO2 and Al2O3. Journal of Materials Science, 2017, 52, 13764-13778.	3.7	9
77	SÃntese e caracterização de perovskitas LaNi(1-x)Co xO3 como precursores de catalisadores para a conversão do metano a gás de sÃntese pela reforma com CO2. Quimica Nova, 2007, 30, 298-303.	0.3	8
78	Performance of cobalt catalysts supported on CexZr1â^'xO2 (0Â<ÂxÂ<Â1) solid solutions in oxidative ethanol reforming. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 181-197.	1.7	8
79	Stabilization of atomically dispersed rhodium sites on ceria-based supports under reaction conditions probed by in situ infrared spectroscopy. Materials Letters, 2020, 277, 128354.	2.6	7
80	Preparation of core-shell Pt@Fe ₃ O ₄ @SiO ₂ nanostructures by oxidation of core-shell FePt@SiO ₂ nanoflowers and their performance in preferential CO oxidation reaction. Materials Research Express, 2019, 6, 015042.	1.6	6
81	Catalisadores Ni/Al2O3 promovidos com molibdênio para a reação de reforma a vapor de metano. Quimica Nova, 2003, 26, 181-187.	0.3	5
82	Perovskites as catalyst precursors: Partial oxidation of methane on La1-xCaxNiO3. Studies in Surface Science and Catalysis, 2007, 167, 481-486.	1.5	5
83	Lithium containing MgAl mixed oxides obtained from sol-gel hydrotalcite for transesterification. Brazilian Journal of Chemical Engineering, 2018, 35, 189-198.	1.3	5
84	Production of light hydrocarbons at atmospheric pressure from CO2 hydrogenation using CexZr(1-x)O2 iron-based catalysts. Journal of CO2 Utilization, 2022, 55, 101805.	6.8	5
85	Characterization and performance within the WGS reaction of Cu catalysts obtained from hydrotalcites. International Journal of Hydrogen Energy, 2021, 46, 32455-32470.	7.1	4
86	Study on the effect of preparation variables of NiAl2O3 catalysts by experimental planning. Chemical Engineering Science, 1996, 51, 2921-2925.	3.8	3
87	Structural characterization of W-Ni-Al2O3catalysts. Journal of Synchrotron Radiation, 2001, 8, 648-650.	2.4	3
88	Estudo da reação de oxidação preferencial do co sobre o sistema CuO/CeO2-TiO2. Quimica Nova, 2010, 33, 1910-1914.	0.3	3
89	Methanol to C ₂ and C ₄ fuels over (Nb/Al)-pillared clay catalysts. RSC Advances, 2016, 6, 27915-27921.	3.6	3
90	CO oxidation and CO-PROX reactions over Au catalysts supported on different metal oxides: a comparative study. Brazilian Journal of Chemical Engineering, 2020, 37, 667-677.	1.3	3

#	Article	IF	CITATIONS
91	Activity of Cu/CeO2 and Cu/CeO2-ZrO2 for low temperature water-gas shift reaction. Studies in Surface Science and Catalysis, 2007, 167, 213-218.	1.5	2
92	Statistical modeling applied to the oxidative coupling of methane reaction over porous (SrxLa1-x)CeO mixed oxides for optimization of C2 yield, C2 selectivity, and C2H4 selectivity. Chemical Engineering Journal Advances, 2021, 7, 100119.	5.2	2
93	Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, 2022, 528, 112512.	2.0	2
94	Improving Coking Resistance and Catalytic Performance of Ni Catalyst from LaNiO3 Perovskite by Dispersion on SBA-15 Mesoporous Silica for Hydrogen Production by Steam Reforming of Ethanol. Topics in Catalysis, 0, , 1.	2.8	1
95	Overall Insights into Sustainable Utilization of Methane and Carbon Dioxide in Heterogeneous Catalysis. Engineering Materials, 2021, , 237-270.	0.6	0