
Manuel Salmeron-Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6277395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An ossifying landscape: materials and growth factor strategies for osteogenic signalling and bone regeneration. Current Opinion in Biotechnology, 2022, 73, 355-363.	3.3	6
2	Materials-driven fibronectin assembly on nanoscale topography enhances mesenchymal stem cell adhesion, protecting cells from bacterial virulence factors and preventing biofilm formation. Biomaterials, 2022, 280, 121263.	5.7	21
3	The influence of nanotopography on cell behaviour through interactions with the extracellular matrix – A review. Bioactive Materials, 2022, 15, 145-159.	8.6	48
4	Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials, 2022, 286, 121568.	5.7	16
5	Living Biointerfaces for the Maintenance of Mesenchymal Stem Cell Phenotypes. Advanced Functional Materials, 2022, 32, .	7.8	4
6	Material-driven fibronectin and vitronectin assembly enhances BMP-2 presentation and osteogenesis. Materials Today Bio, 2022, 16, 100367.	2.6	5
7	Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering. Biomaterials, 2021, 266, 120450.	5.7	27
8	Dynamic Mechanical Control of Alginate-Fibronectin Hydrogels with Dual Crosslinking: Covalent and Ionic. Polymers, 2021, 13, 433.	2.0	11
9	You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Advanced Healthcare Materials, 2021, 10, e2002048.	3.9	28
10	The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. Science Advances, 2021, 7, .	4.7	22
11	A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Materials Today Bio, 2021, 10, 100098.	2.6	114
12	A Hydrogel Platform that Incorporates Laminin Isoforms for Efficient Presentation of Growth Factors – Neural Growth and Osteogenesis. Advanced Functional Materials, 2021, 31, 2010225.	7.8	21
13	Biochemical―and Biophysicalâ€Induced Barriergenesis in the Blood–Brain Barrier: A Review of Barriergenic Factors for Use in In Vitro Models. Advanced NanoBiomed Research, 2021, 1, 2000068.	1.7	2
14	Hydrogel Platforms: A Hydrogel Platform that Incorporates Laminin Isoforms for Efficient Presentation of Growth Factors – Neural Growth and Osteogenesis (Adv. Funct. Mater. 21/2021). Advanced Functional Materials, 2021, 31, 2170150.	7.8	3
15	Lithium Directs Embryonic Stem Cell Differentiation Into Hemangioblastâ€Like Cells. Advanced Biology, 2021, 5, 2000569.	1.4	1
16	High toughness resorbable brushite-gypsum fiber-reinforced cements. Materials Science and Engineering C, 2021, 127, 112205.	3.8	6
17	Engineered living biomaterials. Nature Reviews Materials, 2021, 6, 1175-1190.	23.3	181
18	Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway. Cell Biology and Toxicology, 2021, 37, 915-933.	2.4	8

#	Article	IF	CITATIONS
19	The Plot Thickens: The Emerging Role of Matrix Viscosity in Cell Mechanotransduction. Advanced Healthcare Materials, 2020, 9, e1901259.	3.9	75
20	The Arp2/3 complex is critical for colonisation of the mouse skin by melanoblasts. Development (Cambridge), 2020, 147, .	1.2	9
21	Engineered Fullâ€Length Fibronectin–Hyaluronic Acid Hydrogels for Stem Cell Engineering. Advanced Healthcare Materials, 2020, 9, e2000989.	3.9	28
22	Nanovibrational Stimulation of Mesenchymal Stem Cells Induces Therapeutic Reactive Oxygen Species and Inflammation for Three-Dimensional Bone Tissue Engineering. ACS Nano, 2020, 14, 10027-10044.	7.3	33
23	What Caging Force Cells Feel in 3D Hydrogels: A Rheological Perspective. Advanced Healthcare Materials, 2020, 9, e2000517.	3.9	23
24	Borax induces osteogenesis by stimulating NaBC1 transporter via activation of BMP pathway. Communications Biology, 2020, 3, 717.	2.0	8
25	Material-driven fibronectin assembly rescues matrix defects due to mutations in collagen IV in fibroblasts. Biomaterials, 2020, 252, 120090.	5.7	9
26	Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials, 2020, 252, 120104.	5.7	64
27	Cell Behavior within Nanogrooved Sandwich Culture Systems. Small, 2020, 16, e2001975.	5.2	15
28	Chiral Tartaric Acid Improves Fracture Toughness of Bioactive Brushite–Collagen Bone Cements. ACS Applied Bio Materials, 2020, 3, 5056-5066.	2.3	4
29	T-Cell–Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension. Circulation Research, 2020, 126, 988-1003.	2.0	59
30	The creatine–phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nature Metabolism, 2020, 2, 62-80.	5.1	96
31	Assembling Living Building Blocks to Engineer Complex Tissues. Advanced Functional Materials, 2020, 30, 1909009.	7.8	76
32	Plasma polymerised nanoscale coatings of controlled thickness for efficient solid-phase presentation of growth factors. Materials Science and Engineering C, 2020, 113, 110966.	3.8	17
33	Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochemical Journal, 2020, 477, 3349-3366.	1.7	11
34	Chondrobags: A high throughput alginate-fibronectin micromass platform for in vitro human cartilage formation. Biofabrication, 2020, 12, 045034.	3.7	10
35	Bacteria-laden microgels as autonomous three-dimensional environments for stem cell engineering. Materials Today Bio, 2019, 2, 100011.	2.6	17
36	Zinc Maintains Embryonic Stem Cell Pluripotency and Multilineage Differentiation Potential via AKT Activation. Frontiers in Cell and Developmental Biology, 2019, 7, 180.	1.8	7

#	Article	IF	CITATIONS
37	Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. Scientific Reports, 2019, 9, 12944.	1.6	17
38	Simultaneous Boron Ion hannel/Growth Factor Receptor Activation for Enhanced Vascularization. Advanced Biology, 2019, 3, e1800220.	3.0	12
39	Mechanotransduction and Growth Factor Signaling in Hydrogel-Based Microenvironments. , 2019, , 87-87.		1
40	3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. Journal of Tissue Engineering, 2019, 10, 204173141984585.	2.3	59
41	Minor Chemistry Changes Alter Surface Hydration to Control Fibronectin Adsorption and Assembly into Nanofibrils. Advanced Theory and Simulations, 2019, 2, 1900169.	1.3	8
42	Nanoscale Coatings for Ultralow Dose BMPâ€2â€Driven Regeneration of Criticalâ€ S ized Bone Defects. Advanced Science, 2019, 6, 1800361.	5.6	50
43	Hybrid core–shell scaffolds for bone tissue engineering. Biomedical Materials (Bristol), 2019, 14, 025008.	1.7	30
44	Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials, 2019, 8, e1801469.	3.9	15
45	Engineered coatings for titanium implants to present ultra-low doses of BMP-7. ACS Biomaterials Science and Engineering, 2018, 4, 1812-1819.	2.6	29
46	Control of cell behaviour through nanovibrational stimulation: nanokicking. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170290.	1.6	23
47	Receptor control in mesenchymal stem cell engineering. Nature Reviews Materials, 2018, 3, .	23.3	96
48	Molecular clutch drives cell response to surface viscosity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1192-1197.	3.3	115
49	Biocompatible Chitosan-Functionalized Upconverting Nanocomposites. ACS Omega, 2018, 3, 86-95.	1.6	21
50	Current approaches for modulation of the nanoscale interface in the regulation of cell behavior. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2455-2464.	1.7	22
51	Tissue engineering the cancer microenvironment—challenges and opportunities. Biophysical Reviews, 2018, 10, 1695-1711.	1.5	47
52	Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway. Scientific Reports, 2018, 8, 13642.	1.6	22
53	Designing stem cell niches for differentiation and self-renewal. Journal of the Royal Society Interface, 2018, 15, 20180388.	1.5	107
54	Bacteriaâ€Based Materials for Stem Cell Engineering. Advanced Materials, 2018, 30, e1804310.	11.1	52

#	Article	IF	CITATIONS
55	Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies. Journal of Tissue Engineering, 2018, 9, 204173141878982.	2.3	18
56	Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. Journal of Tissue Engineering, 2018, 9, 204173141879069.	2.3	139
57	The strength of the protein-material interaction determines cell fate. Acta Biomaterialia, 2018, 77, 74-84.	4.1	28
58	Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2774-2784.	1.3	35
59	Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 2017, 126, 61-74.	5.7	61
60	Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments. Advanced Healthcare Materials, 2017, 6, 1700052.	3.9	56
61	Cell migration on material-driven fibronectin microenvironments. Biomaterials Science, 2017, 5, 1326-1333.	2.6	23
62	Comparative Study of Osteogenic Activity of Multilayers Made of Synthetic and Biogenic Polyelectrolytes. Macromolecular Bioscience, 2017, 17, 1700078.	2.1	7
63	Confined Sandwichlike Microenvironments Tune Myogenic Differentiation. ACS Biomaterials Science and Engineering, 2017, 3, 1710-1718.	2.6	5
64	Vitronectin as a Micromanager of Cell Response in Materialâ€Đriven Fibronectin Nanonetworks. Advanced Biology, 2017, 1, 1700047.	3.0	11
65	Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nature Biomedical Engineering, 2017, 1, 758-770.	11.6	77
66	Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS Omega, 2017, 2, 7609-7620.	1.6	39
67	Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO Journal, 2017, 36, 2373-2389.	3.5	144
68	Protease-degradable microgels for protein delivery for vascularization. Biomaterials, 2017, 113, 170-175.	5.7	72
69	Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency. Biomaterials, 2017, 116, 10-20.	5.7	49
70	4.11 Nanoscale Surface Cues and Cell Behavior â~†. , 2017, , 163-179.		0
71	Dynamic Reorganization and Enzymatic Remodeling of Type IV Collagen at Cell–Biomaterial Interface. Advances in Protein Chemistry and Structural Biology, 2016, 105, 81-104.	1.0	14
72	Gelatin—Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromolecular Bioscience, 2016, 16, 1311-1324.	2.1	54

#	Article	IF	CITATIONS
73	Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior. ACS Nano, 2016, 10, 6638-6647.	7.3	105
74	Differentiation of Human Mesenchymal Stem Cells Toward Quality Cartilage Using Fibrinogenâ€Based Nanofibers. Macromolecular Bioscience, 2016, 16, 1348-1359.	2.1	14
75	Molecular composition of GAC-collagen I multilayers affects remodeling of terminal layers and osteogenic differentiation of adipose-derived stem cells. Acta Biomaterialia, 2016, 41, 86-99.	4.1	42
76	PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation. Colloids and Surfaces B: Biointerfaces, 2016, 144, 152-160.	2.5	22
77	Role of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds. Colloids and Surfaces B: Biointerfaces, 2016, 148, 324-332.	2.5	9
78	Synergistic growth factor microenvironments. Chemical Communications, 2016, 52, 13327-13336.	2.2	46
79	Materialâ€Driven Fibronectin Assembly Promotes Maintenance of Mesenchymal Stem Cell Phenotypes. Advanced Functional Materials, 2016, 26, 6563-6573.	7.8	23
80	Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Science Advances, 2016, 2, e1600188.	4.7	104
81	Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Scientific Reports, 2016, 6, 21809.	1.6	19
82	Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface. Langmuir, 2016, 32, 800-809.	1.6	29
83	Sandwich-like Microenvironments to Harness Cell/Material Interactions. Journal of Visualized Experiments, 2015, , e53090.	0.2	2
84	Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 18125-18135.	4.0	16
85	Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats. Biomaterials, 2015, 63, 137-145.	5.7	91
86	Material-based strategies to engineer fibronectin matrices for regenerative medicine. International Materials Reviews, 2015, 60, 245-264.	9.4	20
87	Cell migration within confined sandwich-like nanoenvironments. Nanomedicine, 2015, 10, 815-828.	1.7	9
88	Dynamic Behavior of Vitronectin at the Cell–Material Interface. ACS Biomaterials Science and Engineering, 2015, 1, 927-934.	2.6	15
89	Different Organization of Type I Collagen Immobilized on Silanized and Nonsilanized Titanium Surfaces Affects Fibroblast Adhesion and Fibronectin Secretion. ACS Applied Materials & Interfaces, 2015, 7, 20667-20677.	4.0	27
90	Borax-Loaded PLLA for Promotion of Myogenic Differentiation. Tissue Engineering - Part A, 2015, 21, 2662-2672.	1.6	17

#	Article	IF	CITATIONS
91	Micro-computed tomography image-based evaluation of 3D anisotropy degree of polymer scaffolds. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 446-455.	0.9	9
92	A Fractal Nature for Polymerized Laminin. PLoS ONE, 2014, 9, e109388.	1.1	16
93	Robust fabrication of electrospun-like polymer mats to direct cell behaviour. Biofabrication, 2014, 6, 035009.	3.7	8
94	Fibronectin-matrix sandwich-like microenvironments to manipulate cell fate. Biomaterials Science, 2014, 2, 381-389.	2.6	14
95	A Material-Based Platform to Modulate Fibronectin Activity and Focal Adhesion Assembly. BioResearch Open Access, 2014, 3, 286-296.	2.6	35
96	Epoxy networks and thermosensitive hydrogels prepared from α,ï‰-diamino terminated polyoxypropylene and polyoxyethylene bis(glycidyl ether). European Polymer Journal, 2014, 55, 144-152.	2.6	11
97	Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Scientific Reports, 2014, 4, 5849.	1.6	15
98	Dorsal and ventral stimuli in sandwichâ€like microenvironments. Effect on cell differentiation. Biotechnology and Bioengineering, 2013, 110, 3048-3058.	1.7	15
99	Role of Material-Driven Fibronectin Fibrillogenesis in Protein Remodeling. BioResearch Open Access, 2013, 2, 364-373.	2.6	21
100	Fibroblasts remodeling of type IV collagen at a biomaterials interface. Biomaterials Science, 2013, 1, 494.	2.6	18
101	Vitronectin alters fibronectin organization at the cell–material interface. Colloids and Surfaces B: Biointerfaces, 2013, 111, 618-625.	2.5	20
102	Functional Living Biointerphases. Advanced Healthcare Materials, 2013, 2, 1213-1218.	3.9	12
103	Non-monotonic cell differentiation pattern on extreme wettability gradients. Biomaterials Science, 2013, 1, 202-212.	2.6	25
104	Chondrocytes Cultured in an Adhesive Macroporous Scaffold Subjected to Stirred Flow Bioreactor Behave Like in Static Culture. Journal of Biomaterials and Tissue Engineering, 2013, 3, 312-319.	0.0	8
105	Nanostructural changes in dentine caused by endodontic irrigants. Medicina Oral, Patologia Oral Y Cirugia Bucal, 2013, 18, e733-e736.	0.7	6
106	Material-Driven Fibronectin Fibrillogenesis. ACS Symposium Series, 2012, , 471-496.	0.5	5
107	Dorsal and Ventral Stimuli in Cell–Material Interactions: Effect on Cell Morphology. Biointerphases, 2012, 7, 39.	0.6	13
108	Surface mobility regulates skeletal stem cell differentiation. Integrative Biology (United Kingdom), 2012, 4, 531.	0.6	39

#	Article	IF	CITATIONS
109	Multilayer adsorption by Monte Carlo simulation. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 4774-4782.	1.2	2
110	Structure and properties of epoxy/polyaniline nanocomposites. Journal of Non-Crystalline Solids, 2012, 358, 414-419.	1.5	7
111	Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials (Bristol), 2012, 7, 035004.	1.7	83
112	Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter, 2012, 8, 5575.	1.2	30
113	Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2330-2341.	2.1	9
114	Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine, 2012, 23, 195-204.	1.7	30
115	Role of superhydrophobicity in the biological activity of fibronectin at the cell–material interface. Soft Matter, 2011, 7, 10803.	1.2	58
116	Arrangement of Type IV Collagen and Laminin on Substrates with Controlled Density of –OH Groups. Tissue Engineering - Part A, 2011, 17, 2245-2257.	1.6	13
117	Biodegradable poly(<scp>L</scp> ″actide) and polycaprolactone block copolymer networks. Polymer International, 2011, 60, 264-270.	1.6	4
118	Fibronectin Distribution on Demixed Nanoscale Topographies. International Journal of Artificial Organs, 2011, 34, 54-63.	0.7	25
119	Molecular mobility in biodegradable poly(\$ varepsilon\$ -caprolactone)/poly(hydroxyethyl acrylate) networks. European Physical Journal E, 2011, 34, 37.	0.7	9
120	Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 2011, 32, 2099-2105.	5.7	122
121	Arrangement of type IV collagen on NH ₂ and COOH functionalized surfaces. Biotechnology and Bioengineering, 2011, 108, 3009-3018.	1.7	16
122	Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials, 2011, 32, 3958-3968.	5.7	105
123	Role of Surface Chemistry in Protein Remodeling at the Cell-Material Interface. PLoS ONE, 2011, 6, e19610.	1.1	78
124	Structure and biological response of polymer/silica nanocomposites prepared by sol–gel technique. Composites Science and Technology, 2010, 70, 1789-1795.	3.8	10
125	Structure and dynamics in poly(L-lactide) copolymer networks. Colloid and Polymer Science, 2010, 288, 555-565.	1.0	7
126	Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research - Part A, 2010, 92A, 322-331.	2.1	53

#	Article	IF	CITATIONS
127	Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1182-1193.	2.1	41
128	Vitronectin activity on polymer substrates with controlled –OH density. Polymer, 2010, 51, 2329-2336.	1.8	17
129	Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 2010, 77, 181-190.	2.5	108
130	Molecular assembly and biological activity of a recombinant fragment of fibronectin (FNIII7–10) on poly(ethyl acrylate). Colloids and Surfaces B: Biointerfaces, 2010, 78, 310-316.	2.5	16
131	Subtle variations in polymer chemistry modulate substrate stiffness and fibronectin activity. Soft Matter, 2010, 6, 4748.	1.2	41
132	Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. , 2010, 19, 262-272.		49
133	Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering - Part A, 2009, 15, 3271-3281.	1.6	91
134	Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 191-202.	1.6	33
135	Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 277-286.	1.6	53
136	Fibrinogen Patterns and Activity on Substrates with Tailored Hydroxy Density. Macromolecular Bioscience, 2009, 9, 766-775.	2.1	21
137	Poly(l-lactide) networks with tailored water sorption. Colloid and Polymer Science, 2009, 287, 671-681.	1.0	17
138	Segmental dynamics in poly(ε aprolactone)/poly(<scp>L</scp> â€lactide) copolymer networks. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 183-193.	2.4	24
139	Poly(<scp>L</scp> â€lactide) Substrates with Tailored Surface Chemistry by Plasma Copolymerisation of Acrylic Monomers. Plasma Processes and Polymers, 2009, 6, 190-198.	1.6	13
140	Physical interactions in macroporous scaffolds based on poly(É›-caprolactone)/chitosan semi-interpenetrating polymer networks. Polymer, 2009, 50, 2058-2064.	1.8	38
141	Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation. Tissue Engineering - Part A, 2009, 15, 1331-1341.	1.6	60
142	Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 2009, 25, 10893-10900.	1.6	51
143	Real-Time Monitoring of Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former. Journal of Physical Chemistry B, 2009, 113, 14209-14217.	1.2	22
144	Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former: Influence of Different Crystallization Pathways. Journal of Physical Chemistry B, 2009, 113, 14196-14208.	1.2	12

#	Article	IF	CITATIONS
145	The Use of Atomic Force Microscopy in Determining the Stiffness and Adhesion Force of Human Dentin After Exposure to Bleaching Agents. Journal of Endodontics, 2009, 35, 1384-1386.	1.4	20
146	Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 378-380.	1.3	65
147	Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 303-313.	1.6	49
148	Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 544-554.	1.6	27
149	Water-induced (nano) organization in poly(ethyl acrylate-co-hydroxyethyl acrylate) networks. European Polymer Journal, 2008, 44, 1996-2004.	2.6	23
150	Phenomenological theory of structural relaxation based on a thermorheologically complex relaxation time distribution. European Physical Journal E, 2008, 27, 87-97.	0.7	1
151	Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering - Part A, 2008, 14, 1365-1375.	1.6	48
152	Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering - Part A, 2008, 14, 1751-1762.	1.6	41
153	Volume Mesh Generation and Finite Element Analysis of Trabecular Bone Magnetic Resonance Images. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1603-6.	0.5	5
154	Effect of the Cooling Rate on the Nucleation Kinetics of Poly(<scp>l</scp> -Lactic Acid) and Its Influence on Morphology. Macromolecules, 2007, 40, 7989-7997.	2.2	141
155	Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 2007, 93, 202-207.	0.2	62
156	Pore collapse during the fabrication process of rubber-like polymer scaffolds. Journal of Applied Polymer Science, 2007, 104, 1475-1481.	1.3	10
157	Influence of the substrate's hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research - Part A, 2007, 83A, 463-470.	2.1	39
158	Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 448-455.	1.6	49
159	Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 266-275.	1.6	20
160	Polymer–silica nanocomposites prepared by sol–gel technique: Nanoindentation and tapping mode AFM studies. European Polymer Journal, 2007, 43, 2775-2783.	2.6	44
161	Nanodomains in a hydrophilic–hydrophobic IPN based on poly(2-hydroxyethyl acrylate) and poly(ethyl) Tj ETQq1	1 0.7843 2.6	14 rgBT /O
162	Dielectric relaxation spectrum of poly (ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate. European Physical Journal E, 2007, 22, 293-302.	0.7	25

#	Article	IF	CITATIONS
163	The kinetics of the structural relaxation process in PHEMA-silica nanocomposites based on an equation for the configurational entropy. European Physical Journal E, 2007, 24, 69-77.	0.7	13
164	Effect of Î ³ -irradiation on the structure of poly(ethyl acrylate-co-hydroxyethyl methacrylate) copolymer networks for biomedical applications. Journal of Materials Science: Materials in Medicine, 2007, 18, 693-698.	1.7	8
165	Effect of poly(L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes. Journal of Materials Science: Materials in Medicine, 2007, 18, 1627-1632.	1.7	26
166	Effect of hydrophilicity on the properties of a degradable polylactide. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 656-664.	2.4	14
167	Crystallization of polyamide confined in sub-micrometer droplets dispersed in a molten polyethylene matrix. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 815-825.	2.4	39
168	Nanoindentation and tapping mode AFM study of phase separation in poly(ethyl) Tj ETQq0 0 0 rgBT /Overlock 10 1378-1383.	Tf 50 547 2.6	Td (acrylate 18
169	Sub-micrometer polyamide droplets dispersed in polyethylene: Dimensional stability above the melting point of polyethylene. Polymer, 2006, 47, 5314-5322.	1.8	5
170	Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research - Part A, 2006, 79A, 495-502.	2.1	38
171	Structure and Properties of Poly(É>-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 2006, 207, 2195-2205.	1.1	27
172	Structure and swelling behaviour of epoxy networks based on α,ï‰-diamino terminated poly(oxypropylene)-block-poly(oxyethylene)-block-poly(oxypropylene). Polymer, 2005, 46, 109-119.	1.8	15
173	On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochimica Acta, 2005, 430, 201-210.	1.2	43
174	Influence of the chemical structure on the kinetics of the structural relaxation process of acrylate and methacrylate polymer networks. Colloid and Polymer Science, 2005, 283, 711-720.	1.0	25
175	Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science, 2005, 40, 4881-4887.	1.7	31
176	Thermal transitions and structure of epoxy networks based on α, ω-diamino terminated poly(propylene) Tj ETQq Science, Part B: Polymer Physics, 2005, 43, 699-708.	0 0 0 rgBT 2.4	[/Overlock] 5
177	Morphological Contributions to Glass Transition in Poly(l-lactic acid). Macromolecules, 2005, 38, 4712-4718.	2.2	137
178	Thermal transitions in α,ï‰-diamino terminated poly(oxypropylene)-block-poly(oxyethylene)-block-poly(oxypropylene) aqueous solutions and their epoxy networks. Journal of Non-Crystalline Solids, 2005, 351, 1254-1260.	1.5	14
179	Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 2005, 6, 3283-3290.	2.6	83
180	The structure of poly(ethyl acrylate-co-hydroxyethyl methacrylate) copolymer networks by segmental dynamics studies based on structural relaxation experiments. Polymer, 2004, 45, 2349-2355.	1.8	15

#	Article	IF	CITATIONS
181	Thermal transitions of poly(N-isopropylmethacrylamide) in aqueous solutions. Polymer, 2004, 45, 4087-4094.	1.8	37
182	Thermodynamical analysis of the hydrogel state in poly(2-hydroxyethyl acrylate). Polymer, 2004, 45, 6207-6217.	1.8	20
183	Thermal transitions in PHEA hydrogels by thermomechanical analysis. A comparison with DSC data. European Polymer Journal, 2004, 40, 329-334.	2.6	12
184	Thermodynamics and statistical mechanics of multilayer adsorption. Journal of Chemical Physics, 2004, 121, 8524.	1.2	37
185	Thermal transitions of benzene in copolymers and interpenetrating polymer networks based on hydrophilic and hydrophobic components: Experimental evidence of hydrophobic interaction. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1713-1721.	2.4	12
186	Influence of the Hydrophobic Phase on the Thermal Transitions of Water Sorbed in a Polymer Hydrogel Based on Interpenetration of a Hydrophilic and a Hydrophobic Network. Macromolecules, 2003, 36, 860-866.	2.2	28
187	Cell-Protein-Material Interaction in Tissue Engineering. , 0, , .		6