
Adrian V Fuchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6277314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Locoâ€Regional Delivery with Cellâ€Target Specificity. Advanced Therapeutics, 2020, 3, 1900171.	3.2	10
2	Effect of Chainâ€End Chemistries on the Efficiency of Coupling Antibodies to Polymers Using Unnatural Amino Acids. Macromolecular Rapid Communications, 2020, 41, e2000294.	3.9	3
3	Understanding the Uptake of Nanomedicines at Different Stages of Brain Cancer Using a Modular Nanocarrier Platform and Precision Bispecific Antibodies. ACS Central Science, 2020, 6, 727-738.	11.3	36
4	Targeted and modular architectural polymers employing bioorthogonal chemistry for quantitative therapeutic delivery. Chemical Science, 2020, 11, 3268-3280.	7.4	22
5	EphA3 Pay-Loaded Antibody Therapeutics for the Treatment of Glioblastoma. Cancers, 2018, 10, 519.	3.7	25
6	Stability of Trithiocarbonate RAFT Agents Containing Both a Cyano and a Carboxylic Acid Functional Group. ACS Macro Letters, 2017, 6, 287-291.	4.8	21
7	Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Molecular Pharmaceutics, 2017, 14, 3539-3549.	4.6	45
8	Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials, 2017, 141, 330-339.	11.4	68
9	Effects of Surface Charge of Hyperbranched Polymers on Cytotoxicity, Dynamic Cellular Uptake and Localization, Hemotoxicity, and Pharmacokinetics in Mice. Molecular Pharmaceutics, 2017, 14, 4485-4497.	4.6	54
10	Overcoming Instability of Antibodyâ€Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies. Advanced Healthcare Materials, 2016, 5, 2055-2068.	7.6	52
11	Targeted Nanomaterials: Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies (Adv. Healthcare Mater. 16/2016). Advanced Healthcare Materials, 2016, 5, 1994-1994.	7.6	2
12	Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo. Pharmaceutical Research, 2016, 33, 2388-2399.	3.5	24
13	Interfacial RAFT Miniemulsion Polymerization: Architectures from an Interface. Macromolecular Chemistry and Physics, 2015, 216, 1271-1281.	2.2	7
14	Utilising polymers to understand diseases: advanced molecular imaging agents. Polymer Chemistry, 2015, 6, 868-880.	3.9	28
15	The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: Evaluation of their potential for colon-specific delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 393-403.	4.3	44
16	Evaluation of Polymeric Nanomedicines Targeted to PSMA: Effect of Ligand on Targeting Efficiency. Biomacromolecules, 2015, 16, 3235-3247.	5.4	38
17	Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces. Chemical Communications, 2015, 51, 273-275.	4.1	14
18	Sticky water surfaces: Helix–coil transitions suppressed in a cell-penetrating peptide at the air-water interface. Journal of Chemical Physics, 2014, 141, 22D517.	3.0	24

Adrian V Fuchs

#	Article	IF	CITATIONS
19	Development of a polymer theranostic for prostate cancer. Polymer Chemistry, 2014, 5, 6932-6942.	3.9	53
20	A molecular "screw-clamp†accelerating click reactions in miniemulsions. Chemical Communications, 2014, 50, 10495-10498.	4.1	11
21	Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties. Biomaterials Science, 2013, 1, 470.	5.4	41
22	Enzyme cleavable nanoparticles from peptide based triblock copolymers. Nanoscale, 2013, 5, 4829.	5.6	14
23	Biomimetic Silver-Containing Colloids of Poly(2-methacryloyloxyethyl phosphorylcholine) and Their Film-Formation Properties. Langmuir, 2012, 28, 4974-4983.	3.5	14
24	Photo-initiated miniemulsion polymerization as a route to the synthesis of gold nanoparticle encapsulated latexes. Polymer, 2010, 51, 2119-2124.	3.8	24
25	Two-Dimensional Crystal Growth and Stacking of Bis(phthalocyaninato) Rare Earth Sandwich Complexes at the 1-Phenyloctane/Graphite Interface. Journal of Physical Chemistry B, 2006, 110, 1661-1664.	2.6	42