Manuel A F V Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6276873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-scale genome editing based on high-capacity adenovectors andÂCRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells. Nucleic Acids Research, 2022, 50, 7761-7782.	6.5	9
2	A primer to gene therapy: Progress, prospects, and problems. Journal of Inherited Metabolic Disease, 2021, 44, 54-71.	1.7	9
3	Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Research, 2021, 49, 11986-12001.	6.5	19
4	Precise and broad scope genome editing based on high-specificity Cas9 nickases. Nucleic Acids Research, 2021, 49, 1173-1198.	6.5	29
5	TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Frontiers in Cell and Developmental Biology, 2021, 9, 616610.	1.8	18
6	Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Therapy, 2020, 27, 209-225.	2.3	42
7	Expanding the editable genome and CRISPR–Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking. Nucleic Acids Research, 2020, 48, 974-995.	6.5	25
8	Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Frontiers in Neuroscience, 2020, 14, 838.	1.4	12
9	Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny. Cells, 2020, 9, 953.	1.8	19
10	High-Capacity Adenoviral Vectors Permit Robust and Versatile Testing of DMD Gene Repair Tools and Strategies in Human Cells. Cells, 2020, 9, 869.	1.8	19
11	Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope?. Frontiers in Genome Editing, 2020, 2, 615619.	2.7	5
12	A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies. Frontiers in Genome Editing, 2020, 2, 617780.	2.7	7
13	Precise and non-disruptive gene editing based on programmable nickases. Cell & Gene Therapy Insights, 2020, 6, 427-435.	0.1	Ο
14	Intronic <i>SMCHD1</i> variants in FSHD: testing the potential for CRISPR-Cas9 genome editing. Journal of Medical Genetics, 2019, 56, 828-837.	1.5	27
15	The Chromatin Structure of CRISPR-Cas9 Target DNA Controls the Balance between Mutagenic and Homology-Directed Gene-Editing Events. Molecular Therapy - Nucleic Acids, 2019, 16, 141-154.	2.3	39
16	DNA, RNA, and Protein Tools for Editing the Genetic Information in Human Cells. IScience, 2018, 6, 247-263.	1.9	25
17	Correction of Recessive DystrophicÂEpidermolysis Bullosa by Transposon-Mediated Integration of COL7A1 in Transplantable Patient-Derived Primary Keratinocytes. Journal of Investigative Dermatology, 2017, 137, 836-844.	0.3	24
18	The Chromatin Structure Differentially Impacts High-Specificity CRISPR-Cas9 Nuclease Strategies. Molecular Therapy - Nucleic Acids, 2017, 8, 558-563.	2.3	36

Manuel A F V Gonçalves

#	Article	IF	CITATIONS
19	In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nature Communications, 2017, 8, 657.	5.8	74
20	The emerging role of viral vectors as vehicles for DMD gene editing. Genome Medicine, 2016, 8, 59.	3.6	18
21	Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Scientific Reports, 2016, 6, 37051.	1.6	60
22	Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Research, 2016, 44, 6482-6492.	6.5	111
23	Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Research, 2016, 44, 1449-1470.	6.5	63
24	Engineered Viruses as Genome Editing Devices. Molecular Therapy, 2016, 24, 447-457.	3.7	119
25	Genome editing at the crossroads of delivery, specificity, and fidelity. Trends in Biotechnology, 2015, 33, 280-291.	4.9	121
26	Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nature Methods, 2014, 11, 1051-1057.	9.0	123
27	Construction and characterization of adenoviral vectors for the delivery of TALENs into human cells. Methods, 2014, 69, 179-187.	1.9	32
28	Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Scientific Reports, 2014, 4, 5105.	1.6	121
29	Lentiviral Vectors Encoding Zinc-Finger Nucleases Specific for the Model Target Locus HPRT1. Methods in Molecular Biology, 2014, 1114, 181-199.	0.4	9
30	Histone Deacetylase Inhibition Activates Transgene Expression from Integration-Defective Lentiviral Vectors in Dividing and Non-Dividing Cells. Human Gene Therapy, 2013, 24, 78-96.	1.4	50
31	Development of an AdEasyâ€based system to produce first―and secondâ€generation adenoviral vectors with tropism for CAR―or CD46â€positive cells. Journal of Gene Medicine, 2013, 15, 1-11.	1.4	25
32	Histone Deacetylase Inhibition Rescues Gene Knockout Levels Achieved with Integrase-Defective Lentiviral Vectors Encoding Zinc-Finger Nucleases. Human Gene Therapy Methods, 2013, 24, 399-411.	2.1	19
33	Targeted Gene Addition in Human Epithelial Stem Cells by Zinc-finger Nuclease-mediated Homologous Recombination. Molecular Therapy, 2013, 21, 1695-1704.	3.7	53
34	Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Research, 2013, 41, e63-e63.	6.5	246
35	Concerted nicking of donor and chromosomal acceptor DNA promotes homology-directed gene targeting in human cells. Nucleic Acids Research, 2012, 40, 3443-3455.	6.5	17
36	Nonspaced inverted DNA repeats are preferential targets for homology-directed gene repair in mammalian cells. Nucleic Acids Research, 2012, 40, 1984-1999.	6.5	15

Manuel A F V Gonçalves

#	Article	IF	CITATIONS
37	Myogenic Properties of Human Mesenchymal Stem Cells Derived from Three Different Sources. Cell Transplantation, 2012, 21, 153-173.	1.2	73
38	Adenoviral Vectors Stimulate Glucagon Transcription in Human Mesenchymal Stem Cells Expressing Pancreatic Transcription Factors. PLoS ONE, 2012, 7, e48093.	1.1	11
39	Long-Term Contribution of Human Bone Marrow Mesenchymal Stromal Cells to Skeletal Muscle Regeneration in Mice. Cell Transplantation, 2011, 20, 217-232.	1.2	53
40	Transcription Factor Rational Design Improves Directed Differentiation of Human Mesenchymal Stem Cells Into Skeletal Myocytes. Molecular Therapy, 2011, 19, 1331-1341.	3.7	29
41	Rapid and Sensitive Lentivirus Vector-Based Conditional Gene Expression Assay to Monitor and Quantify Cell Fusion Activity. PLoS ONE, 2010, 5, e10954.	1.1	10
42	Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease. Nucleic Acids Research, 2009, 37, 5725-5736.	6.5	36
43	Genetic Complementation of Human Muscle Cells via Directed Stem Cell Fusion. Molecular Therapy, 2008, 16, 741-748.	3.7	33
44	Targeted Chromosomal Insertion of Large DNA into the Human Genome by a Fiber-Modified High-Capacity Adenovirus-Based Vector System. PLoS ONE, 2008, 3, e3084.	1.1	19
45	Modular and excisable molecular switch for the induction of gene expression by the yeast FLP recombinase. BioTechniques, 2006, 41, 711-713.	0.8	6
46	Adenovirus: from foe to friend. Reviews in Medical Virology, 2006, 16, 167-186.	3.9	100
47	Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Human Molecular Genetics, 2006, 15, 213-221.	1.4	77
48	Transduction of myogenic cells by retargeted dual high-capacity hybrid viral vectors: robust dystrophin synthesis in duchenne muscular dystrophy muscle cells. Molecular Therapy, 2006, 13, 976-986.	3.7	36
49	Endowing Human Adenovirus Serotype 5 Vectors with Fiber Domains of Species B Greatly Enhances Gene Transfer into Human Mesenchymal Stem Cells. Stem Cells, 2005, 23, 1598-1607.	1.4	54
50	A concise peer into the background, initial thoughts and practices of human gene therapy. BioEssays, 2005, 27, 506-517.	1.2	19
51	Transfer of the Full-Length Dystrophin-Coding Sequence into Muscle Cells by a Dual High-Capacity Hybrid Viral Vector with Site-Specific Integration Ability. Journal of Virology, 2005, 79, 3146-3162.	1.5	43
52	Adeno-associated virus: from defective virus to effective vector. Virology Journal, 2005, 2, 43.	1.4	184
53	Stable transduction of large DNA by high-capacity adeno-associated virus/adenovirus hybrid vectors. Virology, 2004, 321, 287-296.	1.1	23
54	Efficient Generation and Amplification of High-Capacity Adeno-Associated Virus/Adenovirus Hybrid Vectors. Journal of Virology, 2002, 76, 10734-10744.	1.5	25

4

#	Article	IF	CITATIONS
55	Generation of a High-Capacity Hybrid Vector: Packaging of Recombinant Adenoassociated Virus Replicative Intermediates in Adenovirus Capsids Overcomes the Limited Cloning Capacity of Adenoassociated Virus Vectors. Virology, 2001, 288, 236-246.	1.1	35