
Shu-Ping Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6275592/publications.pdf Version: 2024-02-01

SHIL-PING LUO

#	Article	IF	CITATIONS
1	Visible-Light Photoredox-Catalyzed Carboxylation of Activated C(sp ³)─O Bonds with CO ₂ . ACS Catalysis, 2022, 12, 18-24.	11.2	39
2	Visible-light photoredox-catalyzed carboxylation of benzyl halides with CO2: Mild and transition-metal-free. Chinese Journal of Catalysis, 2022, 43, 1667-1673.	14.0	12
3	Highly active and reusable copper phthalocyanine derivatives catalyzed the hydroxylation of (hetero)aryl halides. Molecular Catalysis, 2022, 525, 112342.	2.0	1
4	Photoinduced Activation of Unactivated C(sp 3)â€H Bonds and Acylation Reactions. ChemistrySelect, 2021, 6, 2523-2528.	1.5	9
5	Single Cu(I)-Photosensitizer Enabling Combination of Energy-Transfer and Photoredox Catalysis for the Synthesis of Benzo[<i>b</i>]fluorenols from 1,6-Enynes. Organic Letters, 2021, 23, 4478-4482.	4.6	14
6	Heteroleptic copper(I) complexes as energy transfer photocatalysts for the intermolecular [2Â+Â2] photodimerization of chalcones, cinnamates and cinnamamides. Tetrahedron Letters, 2021, 72, 153091.	1.4	7
7	Visible-light photoredox-catalyzed selective carboxylation of C(sp3)â^'F bonds with CO2. CheM, 2021, 7, 3099-3113.	11.7	86
8	Mononuclear Copper(I) complexes based on phenanthroline derivatives P^N^N^P tetradentate ligands: Syntheses, crystal structure, photochemical properties. Dyes and Pigments, 2020, 173, 108000.	3.7	12
9	Tertiary Amines Acting as Alkyl Radical Equivalents Enabled by a P/N Heteroleptic Cu(I) Photosensitizer. Organic Letters, 2020, 22, 8888-8893.	4.6	34
10	The Heteroleptic Cu(I) Photosensitizerâ€Containing 3,8â€Disubstituted Phenanthroline: Synthesis, Photophysical Properties and Photocatalytic Hydrogen Evolution from Water. European Journal of Inorganic Chemistry, 2020, 2020, 4278-4283.	2.0	6
11	P/N Heteroleptic Cu(I)-Photosensitizer-Catalyzed Deoxygenative Radical Alkylation of Aromatic Alkynes with Alkyl Aldehydes Using Dipropylamine as a Traceless Linker Agent. ACS Catalysis, 2020, 10, 7563-7572.	11.2	26
12	Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation. Nature Communications, 2020, 11, 591.	12.8	75
13	Donor–acceptor fluorophores as efficient energy transfer photocatalysts for [2 + 2] photodimerization. Organic and Biomolecular Chemistry, 2020, 18, 3707-3716.	2.8	20
14	Heteroleptic copper(I) photosensitizers with carbazole-substituted phenanthroline ligands: Synthesis, photophysical properties and application to photocatalytic H2 generation. Dyes and Pigments, 2019, 162, 771-775.	3.7	11
15	Thermally activated delayed fluorescence (TADF) dyes as efficient organic photosensitizers for photocatalytic water reduction. Catalysis Communications, 2019, 119, 11-15.	3.3	18
16	Effective quenching and excited-state relaxation of a Cu(I) photosensitizer addressed by time-resolved spectroscopy and TDDFT calculations. Chemical Physics, 2018, 515, 557-563.	1.9	9
17	Selective and Catalytic Hydrocarboxylation of Enamides and Imines with CO 2 to Generate α,αâ€Disubstituted αâ€Amino Acids. Angewandte Chemie, 2018, 130, 14093-14097.	2.0	27
18	Structural Design of Conjugated Poly (ferroceneâ€phenanthroline) for Photocatalytic Hydrogen Evolution from Water. ChemPhotoChem, 2018, 2, 791-795.	3.0	3

Shu-Ping Luo

#	Article	IF	CITATIONS
19	Selective and Catalytic Hydrocarboxylation of Enamides and Imines with CO ₂ to Generate α,αâ€Disubstituted αâ€Amino Acids. Angewandte Chemie - International Edition, 2018, 57, 13897-13901.	13.8	129
20	Structureâ€Activated Copper Photosensitisers for Photocatalytic Water Reduction. Chemistry - A European Journal, 2017, 23, 3631-3636.	3.3	41
21	Efficient Photocatalytic Water Reduction Using Inâ€Situ Generated Knölker's Iron Complexes. ChemCatChem, 2016, 8, 2340-2344.	3.7	21
22	Copperâ€Based Photosensitisers in Water Reduction: A More Efficient In Situ Formed System and Improved Mechanistic Understanding. Chemistry - A European Journal, 2016, 22, 1233-1238.	3.3	76
23	Heteroleptic copper(I) photosensitizers of dibenzo[b,j]-1,10-phenanthroline derivatives driven hydrogen generation from water reduction. Dyes and Pigments, 2016, 134, 580-585.	3.7	20
24	Ligand-Controlled Cobalt-Catalyzed Transfer Hydrogenation of Alkynes: Stereodivergent Synthesis of <i>Z</i> - and <i>E-</i> Alkenes. Journal of the American Chemical Society, 2016, 138, 8588-8594.	13.7	269
25	Photocatalytic Hydrogen Production with Copper Photosensitizer–Titanium Dioxide Composites. ChemCatChem, 2014, 6, 82-86.	3.7	53
26	Copper-based water reduction catalysts for efficient light-driven hydrogen generation. Journal of Molecular Catalysis A, 2014, 395, 449-456.	4.8	20
27	Death and Rebirth: Photocatalytic Hydrogen Production by a Self-Organizing Copper–Iron System. ACS Catalysis, 2014, 4, 1845-1849.	11.2	89
28	A Nobleâ€Metalâ€Free System for Photocatalytic Hydrogen Production from Water. Chemistry - A European Journal, 2013, 19, 15972-15978.	3.3	155
29	Photocatalytic Water Reduction with Copperâ€Based Photosensitizers: A Nobleâ€Metalâ€Free System. Angewandte Chemie - International Edition, 2013, 52, 419-423.	13.8	243
30	Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Catalyzed by Bifunctional Thioureas and Mechanistic Insight. European Journal of Organic Chemistry, 2010, 2010, 656-662.	2.4	54
31	Highly Enantioselective Organocatalytic Michael Addition of 2â€Hydroxy―1,4â€naphthoquinone to β,I³â€Unsaturated αâ€Oxo Esters. European Journal of Organic Chemistry, 2010, 2010, 4981-4985.	2.4	40
32	Oneâ€Pot Organocatalytic Asymmetric Synthesis of 3â€Nitroâ€1,2â€dihydroquinolines by a Dualâ€Activation Protocol. Chemistry - an Asian Journal, 2009, 4, 1834-1838.	3.3	34
33	Chiral amine/chiral acid as an excellent organocatalytic system for the enantioselective tandem oxa-Michael-aldol reaction. Organic and Biomolecular Chemistry, 2009, 7, 4539.	2.8	65
34	Fischer indole synthesis catalyzed by novel SO3H-functionalized ionic liquids in water. Green Chemistry, 2009, 11, 1239.	9.0	111
35	2â€{(Imidazolylthio)methyl]pyrrolidine as a Trifunctional Organocatalyst for the Highly Asymmetric Michael Addition of Ketones to Nitroolefins. European Journal of Organic Chemistry, 2008, 2008, 1049-1053.	2.4	60
36	A Novel Enantioselective Catalytic Tandem Oxaâ€Michael–Henry Reaction: Oneâ€Pot Organocatalytic Asymmetric Synthesis of 3â€Nitroâ€2 <i>H</i> â€chromenes. Advanced Synthesis and Catalysis, 2008, 350, 2610-2616.	4.3	111

#	Article	IF	CITATIONS
37	Fischer Indole Synthesis in BrÃ,nsted Acidic Ionic Liquids: A Green, Mild, and Regiospecific Reaction System. European Journal of Organic Chemistry, 2007, 2007, 1007-1012.	2.4	82