Yi Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6275452/publications.pdf

Version: 2024-02-01

218677 395702 4,268 34 26 33 citations h-index g-index papers 34 34 34 2863 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Concentrated Ethanol Electrosynthesis from CO ₂ via a Porous Hydrophobic Adlayer. ACS Applied Materials & (amp; Interfaces, 2022, 14, 4155-4162.	8.0	15
2	Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nature Catalysis, 2022, 5, 185-192.	34.4	40
3	A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule, 2022, 6, 1333-1343.	24.0	51
4	Self-Cleaning CO ₂ Reduction Systems: Unsteady Electrochemical Forcing Enables Stability. ACS Energy Letters, 2021, 6, 809-815.	17.4	159
5	Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature Communications, 2021, 12, 2808.	12.8	91
6	Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nature Communications, 2021, 12, 2932.	12.8	97
7	Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nature Communications, 2021, 12, 3387.	12.8	70
8	CO ₂ electrolysis to multicarbon products in strong acid. Science, 2021, 372, 1074-1078.	12.6	541
9	Single Pass CO ₂ Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO ₂ Regeneration. ACS Energy Letters, 2021, 6, 2952-2959.	17.4	155
10	Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. Cell Reports Physical Science, 2021, 2, 100522.	5.6	38
11	Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule, 2021, 5, 2742-2753.	24.0	37
12	Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. Accounts of Chemical Research, 2020, 53, 347-357.	15.6	43
13	Oxygen-tolerant electroproduction of C ₂ products from simulated flue gas. Energy and Environmental Science, 2020, 13, 554-561.	30.8	113
14	Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Applied Energy, 2020, 261, 114305.	10.1	65
15	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	34.4	325
16	Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nature Communications, 2020, 11, 6190.	12.8	93
17	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nature Communications, 2020, 11, 3685.	12.8	72
18	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	27.8	682

#	Article	IF	CITATIONS
19	Efficient Methane Electrosynthesis Enabled by Tuning Local CO ₂ Availability. Journal of the American Chemical Society, 2020, 142, 3525-3531.	13.7	154
20	Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catalysis, 2020, 3, 75-82.	34.4	390
21	Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly. Joule, 2019, 3, 2777-2791.	24.0	350
22	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catalysis, 2019, 2, 251-258.	34.4	188
23	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis, 2019, 2, 1124-1131.	34.4	214
24	Direct Visualization of Evaporation in a Two-Dimensional Nanoporous Model for Unconventional Natural Gas. ACS Applied Nano Materials, 2018, 1, 1332-1338.	5.0	40
25	Capillary Condensation in 8 nm Deep Channels. Journal of Physical Chemistry Letters, 2018, 9, 497-503.	4.6	65
26	Disposable silicon-glass microfluidic devices: precise, robust and cheap. Lab on A Chip, 2018, 18, 3872-3880.	6.0	47
27	Bubble Point Pressures of Hydrocarbon Mixtures in Multiscale Volumes from Density Functional Theory. Langmuir, 2018, 34, 14058-14068.	3.5	22
28	Nanoscale Phase Measurement for the Shale Challenge: Multicomponent Fluids in Multiscale Volumes. Langmuir, 2018, 34, 9927-9935.	3.5	45
29	Direct visualization of fluid dynamics in sub-10 nm nanochannels. Nanoscale, 2017, 9, 9556-9561.	5.6	22
30	Frontispiece: The Full Pressure–Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
31	The Full Pressure–Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. Angewandte Chemie - International Edition, 2017, 56, 13962-13967.	13.8	12
32	The Full Pressure–Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. Angewandte Chemie, 2017, 129, 14150-14155.	2.0	6
33	Frontispiz: The Full Pressure–Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. Angewandte Chemie, 2017, 129, .	2.0	1
34	Direct Measurement of the Fluid Phase Diagram. Analytical Chemistry, 2016, 88, 6986-6989.	6.5	25