Zhao-Tie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6275326/publications.pdf

Version: 2024-02-01

206 papers 4,632 citations

36 h-index 53 g-index

219 all docs

219 docs citations

219 times ranked 5744 citing authors

#	Article	IF	CITATIONS
1	Photothermal oxidation of cyclohexane over CoLaOx/WO3 Z-scheme composites with p-n heterojunction in solvent-free conditions. Catalysis Today, 2023, 409, 42-52.	4.4	9
2	Elucidating the Support-Size Effect on the Catalytic Stability of CrOx/Silicalite-1 for Oxidative Dehydrogenation of Propane with CO2. Catalysis Letters, 2023, 153, 790-804.	2.6	5
3	Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance. Journal of Nanostructure in Chemistry, 2022, 12, 1075-1087.	9.1	6
4	Dehydrogenation of propane in the presence of CO2 over GaN/SiO2 catalysts: Relationship between the type of SiO2 and the activity. Chemical Engineering Journal, 2022, 433, 134443.	12.7	11
5	Electrocatalytic CO ₂ reduction to ethylene over ZrO ₂ /Cu-Cu ₂ Ocatalysts in aqueous electrolytes. Green Chemistry, 2022, 24, 1527-1533.	9.0	28
6	N-formylation of isoquinoline derivatives with CO2 and H2 over a heterogeneous Ru/ZIF-8 catalyst. Journal of Experimental Nanoscience, 2022, 17, 61-74.	2.4	2
7	Constructing of ultrathin Bi2WO6/BiOCl nanosheets with oxygen vacancies for photocatalytic oxidation of cyclohexane with air in solvent-free. Applied Surface Science, 2022, 584, 152606.	6.1	34
8	Efficient and selective hydrogenation of quinolines over FeNiCu/MCM-41 catalyst at low temperature: Synergism of Fe-Ni and Ni-Cu alloys. Molecular Catalysis, 2022, 520, 112166.	2.0	4
9	Photoprogrammable Moisture-Responsive Actuation of a Shape Memory Polymer Film. ACS Applied Materials & Discrete Supplied Materials & Discrete Supplied Materials & Discrete Supplied Materials & Discrete Supplied National Processing Supplied Nationa	8.0	29
10	Research progress of CO2 oxidative dehydrogenation of propane to propylene over Cr-free metal catalysts. Rare Metals, 2022, 41, 2129-2152.	7.1	20
11	Texture and acidity of amorphous silica-alumina regulated by the complex-decomposition method for steam reforming of dimethyl ether. Catalysis Today, 2022, 402, 172-182.	4.4	2
12	Biomass-Modified Zirconium-Based Catalyst for One-Pot Reductive Etherification of Bioderived Aldehydes to Furanic Diether. ACS Sustainable Chemistry and Engineering, 2022, 10, 4969-4979.	6.7	8
13	CO2 oxidative dehydrogenation of n-butane to butadiene over CrOx supported on CeZr solid solution. Molecular Catalysis, 2022, 524, 112262.	2.0	3
14	Light-Guided Growth of Gradient Hydrogels with Programmable Geometries and Thermally Responsive Actuations. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29188-29196.	8.0	5
15	Synthesis of dimethyl carbonate from CO2 and methanol over CeO2 nanoparticles/Co3O4 nanosheets. Fuel, 2022, 325, 124945.	6.4	15
16	Rubber-like composites with tunable thermal- and photo-responsive shape memory properties. Chemical Engineering Journal, 2022, 447, 137534.	12.7	14
17	Understanding the Role of Fe Doping in Tuning the Size and Dispersion of GaN Nanocrystallites for CO ₂ -Assisted Oxidative Dehydrogenation of Propane. ACS Catalysis, 2022, 12, 8527-8543.	11.2	10
18	Experimental and density functional theory studies on hydroxymethylation of phenylboronic acids with paraformaldehyde over a RhPPh ₃ catalyst. Applied Organometallic Chemistry, 2021, 35, e6104.	3.5	3

#	Article	IF	CITATIONS
19	Rational Designed Polymer as a Metal-Free Catalyst for Hydroxylation of Benzene to Phenol with Dioxygen. Catalysis Letters, 2021, 151, 1330-1335.	2.6	2
20	Controlled direct synthesis of single- to multiple-layer MWW zeolite. National Science Review, 2021, 8, nwaa236.	9.5	13
21	Nb2C MXene assisted CoNi bimetallic catalysts for hydrogenolysis of aromatic ethers. Sustainable Energy and Fuels, 2021, 5, 963-972.	4.9	4
22	Coâ \in polymerization of propylene oxide and CO 2 using early transition metal (groups IV and V) metallocalix[n]arenes (n = 4, 6, 8). Journal of Applied Polymer Science, 2021, 138, 50513.	2.6	4
23	Efficient and selective oxidation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts. Molecular Catalysis, 2021, 505, 111530.	2.0	4
24	Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product. Nature Communications, 2021, 12, 2305.	12.8	45
25	Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N―tri â€Doped Hierarchically Porous Carbon Nanosheets. Angewandte Chemie, 2021, 133, 21649-21655.	2.0	1
26	Programmable Humidity-Responsive Actuation of Polymer Films Enabled by Combining Shape Memory Property and Surface-Tunable Hygroscopicity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38773-38782.	8.0	25
27	Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,Nâ€∢i>trià€Doped Hierarchically Porous Carbon Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 21479-21485.	13.8	29
28	Construction of Indium Oxide/N-Doped Titanium Dioxide Hybrid Photocatalysts for Efficient and Selective Oxidation of Cyclohexane to Cyclohexanone. Journal of Physical Chemistry C, 2021, 125, 19791-19801.	3.1	21
29	Active and selective nature of supported CrOx for the oxidative dehydrogenation of propane with carbon dioxide. Applied Catalysis B: Environmental, 2021, 297, 120400.	20.2	43
30	Photothermal CO ₂ hydrogenation to hydrocarbons over trimetallic Co–Cu–Mn catalysts. Green Chemistry, 2021, 23, 5775-5785.	9.0	24
31	Oxidative Dehydrogenation of Propane to Propylene in the Presence of CO ₂ over Gallium Nitride Supported on NaZSM-5. Industrial & Engineering Chemistry Research, 2021, 60, 2807-2817.	3.7	19
32	Highly active K-promoted $Cu\hat{l}^2$ -Mo2C catalysts for reverse water gas shift reaction: Effect of potassium. Molecular Catalysis, 2021, 516, 111954.	2.0	10
33	A Multi-modal Panoramic Speaker Localization Method. , 2021, , .		0
34	Photo-Dissociable Fe ³⁺ -Carboxylate Coordination: A General Approach toward Hydrogels with Shape Programming and Active Morphing Functionalities. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59310-59319.	8.0	15
35	Amorphous silica-alumina composite with regulated acidity for efficient production of hydrogen via steam reforming of dimethyl ether. Catalysis Today, 2020, 351, 68-74.	4.4	11
36	Flame-spray-pyrolysis amorphous alumina-silica for tailoring the product distribution of Fischer-Tropsch synthesis. Catalysis Today, 2020, 339, 40-47.	4.4	6

#	Article	IF	CITATIONS
37	Interaction between ammonium perfluorooctanoate and CO2 and its removal from fluoropolymer in supercritical carbon dioxide. Separation and Purification Technology, 2020, 232, 115955.	7.9	3
38	Insight into the Intermolecular Interaction and Free Radical Polymerizability of Methacrylates in Supercritical Carbon Dioxide. Polymers, 2020, 12, 78.	4.5	2
39	Photothermal CO2 hydrogenation to methanol over a CoO/Co/TiO2 catalyst in aqueous media under atmospheric pressure. Catalysis Today, 2020, 356, 579-588.	4.4	32
40	Photoresponsive Shape Memory Hydrogels for Complex Deformation and Solvent-Driven Actuation. ACS Applied Materials & Deformation and Solvent-Driven Actuation.	8.0	46
41	Reversible aerobic oxidative dehydrogenation/hydrogenation of N-heterocycles over AlN supported redox cobalt catalysts. Molecular Catalysis, 2020, 496, 111192.	2.0	7
42	Catalytic Behavior of Alkali Treated H-MOR in Selective Synthesis of Ethylenediamine via Condensation Amination of Monoethanolamine. Catalysts, 2020, 10, 386.	3.5	3
43	Catalytic hydrodeoxygenation of biomass-derived oxygenates to bio-fuels over Co-based bimetallic catalysts. Sustainable Energy and Fuels, 2020, 4, 4558-4569.	4.9	21
44	Balancing free and confined metallic Ni for an active and stable catalyst—A case study of CO methanation over Ni/Ni–Al2O3. Journal of Energy Chemistry, 2020, 50, 73-84.	12.9	19
45	Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane. Journal of CO2 Utilization, 2020, 38, 306-313.	6.8	28
46	Iminoboronate Backboneâ€Based Hyperbranched Polymeric Micelles with Fentonâ€Like Enhanced ROS Response. Macromolecular Chemistry and Physics, 2020, 221, 2000022.	2.2	5
47	A combined experimental and theoretical study of the thermal decomposition mechanism and kinetics of ammonium dinitramide (ADN). New Journal of Chemistry, 2020, 44, 6833-6844.	2.8	9
48	The Active Nature of Crystal MoS ₂ for Converting Sulfurâ€Containing Syngas. ChemCatChem, 2019, 11, 1112-1122.	3.7	5
49	Defect-rich Ce1-xZrxO2 solid solutions for oxidative dehydrogenation of ethylbenzene with CO2. Catalysis Today, 2019, 324, 39-48.	4.4	29
50	Insights into the long-term stability of the magnesia modified H-ZSM-5 as an efficient solid acid for steam reforming of dimethyl ether. International Journal of Hydrogen Energy, 2019, 44, 21481-21494.	7.1	13
51	Controlled 3D Shape Transformation Activated by Room Temperature Stretching and Release of a Flat Polymer Sheet. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30308-30316.	8.0	8
52	Catalytic Oxidative Dehydrogenation of <i>n</i> â€Butane on Gallium Nitrideâ€Containing Titanosilicate Catalyst. Canadian Journal of Chemical Engineering, 2019, 97, 3115-3124.	1.7	13
53	Two-step hydrothermally synthesized Ce1-xZrxO2 for oxidative dehydrogenation of ethylbenzene with carbon dioxide. Journal of CO2 Utilization, 2019, 34, 99-107.	6.8	12
54	Understanding the active-site nature of vanadia-based catalysts for oxidative dehydrogenation of ethylbenzene with CO2 via atomic layer deposited VOx on Î ³ -Al2O3. Journal of Catalysis, 2019, 380, 195-203.	6.2	23

#	Article	IF	CITATIONS
55	The formation and physicochemical properties of PEGylated deep eutectic solvents. New Journal of Chemistry, 2019, 43, 8804-8810.	2.8	51
56	Backboneâ€Hydrolyzable Poly(oligo(ethylene glycol) bis(glycidyl ether)―alt â€ketoglutaric acid) with Tunable LCST Behavior. Macromolecular Chemistry and Physics, 2019, 220, 1900004.	2.2	1
57	Selective hydrogenation of quinolines over a CoCu bimetallic catalyst at low temperature. Molecular Catalysis, 2019, 470, 120-126.	2.0	31
58	Precious metal nanoparticles supported on KOH pretreated activated carbon under microwave radiation as a catalyst for selective hydrogenation of cinnamaldehyde. Canadian Journal of Chemical Engineering, 2019, 97, 2505-2515.	1.7	5
59	Insights into the Oxidative Dehydrogenation of Ethylbenzene with CO2 Catalyzed by the Ordered Mesoporous V2O5–Ce0.5Zr0.5O2–Al2O3. Industrial & Description Chemistry Research, 2019, 58, 21372-21381.	3.7	5
60	A Thermo―and Moistureâ€Responsive Zwitterionic Shape Memory Polymer for Novel Selfâ€Healable Wound Dressing Applications. Macromolecular Materials and Engineering, 2019, 304, 1800603.	3.6	29
61	Acid activated montmorillonite for gas-phase catalytic dehydration of monoethanolamine. Applied Clay Science, 2019, 168, 116-124.	5.2	15
62	Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. Journal of Catalysis, 2019, 369, 143-156.	6.2	72
63	Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration. Chemical Engineering Journal, 2019, 358, 467-479.	12.7	29
64	Impact of the acidic group on the hydrolysis of 2-dinitromethylene-5,5-dinitropyrimidine-4,6-dione. RSC Advances, 2018, 8, 13301-13309.	3.6	1
65	Metal-support interactions regulated via carbon coating – A case study of Co/SiO2 for Fischer-Tropsch synthesis. Fuel, 2018, 226, 213-220.	6.4	27
66	Direct Synthesis of the Reduced Co–C/SiO ₂ As an Efficient Catalyst for Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2018, 57, 1137-1145.	3.7	7
67			

#	Article	IF	CITATIONS
73	2D-to-3D Shape Transformation of Room-Temperature-Programmable Shape-Memory Polymers through Selective Suppression of Strain Relaxation. ACS Applied Materials & Interfaces, 2018, 10, 40189-40197.	8.0	30
74	Catalytic function of VO _x /Al ₂ O ₃ for oxidative dehydrogenation of propane: support microstructure-dependent mass transfer and diffusion. Catalysis Science and Technology, 2018, 8, 4864-4876.	4.1	19
75	Investigation of the optimal treatment condition for flax rove in supercritical CO2. Thermal Science, 2018, 22, 1613-1619.	1.1	0
76	Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source. Organic Chemistry Frontiers, 2017, 4, 569-572.	4.5	25
77	Hydrogen production by sorption-enhanced steam reforming of acetic acid over Ni/Ce x Zr 1â^'x O 2 -CaO catalysts. International Journal of Hydrogen Energy, 2017, 42, 7786-7797.	7.1	34
78	Fabricating Triple-Sensitive Polymer Nano-Aggregates via an Aqueous Iminoboronate Multicomponent Reaction. Macromolecular Rapid Communications, 2017, 38, 1600805.	3.9	9
79	Construction of β-Trifluoromethyl Enol Ether via Base-Promoted C–O Coupling and Rearrangement of Hydrogen Atom. Journal of Organic Chemistry, 2017, 82, 4721-4728.	3.2	8
80	Modeling and simulation of an improved ammonia-based desulfurization process for Claus tail gas treatment. RSC Advances, 2017, 7, 23591-23599.	3.6	5
81	Cobalt supported on Zr-modified SiO ₂ as an efficient catalyst for Fischer–Tropsch synthesis. RSC Advances, 2017, 7, 24157-24162.	3.6	6
82	Catalytic behavior of manganese oxides for oxidative dehydrogenation of ethylbenzene with carbon dioxide. Journal of CO2 Utilization, 2017, 22, 63-70.	6.8	13
83	Immobilization of Cyclometalated Iridium Complex onto Multiwalled Carbon Nanotubes for Dehydrogenation of Indolines in Aqueous Solution. Industrial & Engineering Chemistry Research, 2017, 56, 11413-11421.	3.7	8
84	Amphiphilic Imbalance and Stabilization of Block Copolymer Micelles onâ€Demand through Combinational Photoâ€Cleavage and Photoâ€Crosslinking. Macromolecular Rapid Communications, 2017, 38, 1600543.	3.9	17
85	2-Nitrobenzyl Borate Based Photolabile Linker for Breakable Polymer Vesicles. Macromolecular Rapid Communications, 2016, 37, 514-520.	3.9	10
86	Controlled radical polymerization of fluorinated methacrylates in supercritical <scp>CO</scp> ₂ : Synthesis and application of a novel <scp>RAFT</scp> agent. Journal of Polymer Science Part A, 2016, 54, 825-834.	2.3	7
87	Copperâ€Catalyzed Coupling of Indoles with Dimethylformamide as a Methylenating Reagent. Advanced Synthesis and Catalysis, 2016, 358, 539-542.	4.3	44
88	One-step green approach for synthesizing highly ordered pillaring materials via ultrafast transportation. Applied Clay Science, 2016, 124-125, 137-142.	5.2	2
89	The delaminating and pillaring of MCM-22 for Fischer–Tropsch synthesis over cobalt. Catalysis Today, 2016, 274, 109-115.	4.4	21
90	Palladium-catalyzed Suzuki–Miyaura reaction of fluorinated vinyl chloride: a new approach for synthesis α and α,β-trifluoromethylstyrenes. Tetrahedron, 2016, 72, 5684-5690.	1.9	9

#	Article	IF	CITATIONS
91	Palladium catalyzed mono and difunctionalization of hexafluorobut-2-yne. Tetrahedron Letters, 2016, 57, 4345-4347.	1.4	6
92	Insight into the acidic group-induced nitration mechanism of 2-methyl-4,6-dihydroxypyrimidine (MDP) with nitronium. RSC Advances, 2016, 6, 80145-80157.	3.6	1
93	Palladiumâ€Catalyzed Direct Crossâ€Coupling of Carboranyllithium with (Hetero)Aryl Halides. Chemistry - A European Journal, 2016, 22, 17542-17546.	3.3	24
94	A superhydrophobic hyper-cross-linked polymer synthesized at room temperature used as an efficient adsorbent for volatile organic compounds. RSC Advances, 2016, 6, 97048-97054.	3.6	26
95	Diethanol ammonium-borate based polybetaine with tunable UCST phase transition. Chinese Journal of Polymer Science (English Edition), 2016, 34, 777-784.	3.8	3
96	Amphiphilic Polymer Micellar Disruption Based on Main-Chain Photodegradation. Langmuir, 2016, 32, 12-18.	3. 5	16
97	Oxidative Heck Reaction of Fluorinated Olefins with Arylboronic Acids by Palladium Catalysis. European Journal of Organic Chemistry, 2015, 2015, 4340-4343.	2.4	28
98	Density functional theory study on the reaction of triazol-3-one with nitronium: direct nitration versus acidic group-induced nitration. RSC Advances, 2015, 5, 25183-25191.	3.6	8
99	Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt. Fuel Processing Technology, 2015, 136, 87-95.	7.2	26
100	Insights into CeO2-modified Ni–Mg–Al oxides for pressurized carbon dioxide reforming of methane. Chemical Engineering Journal, 2015, 259, 581-593.	12.7	50
101	Photo-induced dynamic association of coumarin pendants within amphiphilic random copolymer micelles. Colloid and Polymer Science, 2015, 293, 823-831.	2.1	13
102	Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer–Tropsch synthesis. Fuel Processing Technology, 2015, 138, 116-124.	7.2	17
103	Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams. Chemical Engineering Journal, 2015, 281, 34-41.	12.7	72
104	Light-Triggered Disruption of PAG-Based Amphiphilic Random Copolymer Micelles. Langmuir, 2015, 31, 7758-7763.	3.5	14
105	Insight into the role of intermolecular interactions on the enhanced solubility of fluorinated epoxide oligomers in supercritical CO ₂ . Green Chemistry, 2015, 17, 4489-4498.	9.0	14
106	Vanadium Oxide Supported on Titanosilicates for the Oxidative Dehydrogenation of <i>n</i> Butane. Industrial & Samp; Engineering Chemistry Research, 2015, 54, 3602-3610.	3.7	17
107	Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications, 2015, 68, 105-109.	3.3	17
108	Key Factors on the Pressurized Tri-Reforming of Methane over Ni-SiO2. ACS Symposium Series, 2015, , 155-169.	0.5	9

#	Article	IF	Citations
109	Regioisomerized atom transfer radical addition (ATRA) of olefins with dichlorofluorocarbons. RSC Advances, 2015, 5, 101412-101415.	3.6	6
110	Palladium-Catalyzed Oxidative Carbonylation for the Synthesis of Symmetrical Diaryl Ketones at Atmospheric CO Pressure. Synlett, 2014, 25, 1097-1100.	1.8	12
111	Highly Efficient Rhodium-Catalyzed Transfer Hydrogenation of Nitroarenes into Amines and Formanilides. Synlett, 2014, 25, 1295-1298.	1.8	25
112	Perfectly Alternating Copolymerization of Propylene Oxide and CO ₂ over SalenCo/SalenCr Complexes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 589-597.	2.2	7
113	Highly Active and Stable Ni–SiO ₂ Prepared by a Complex-Decomposition Method for Pressurized Carbon Dioxide Reforming of Methane. Industrial & Engineering Chemistry Research, 2014, 53, 19077-19086.	3.7	25
114	Equilibrating Immigration and Anthracene-Maleimide-Based Diels–Alder-Trapping of Octylmaleimide in Mixed Photo-Cross-Linked Polymer Micelles. Langmuir, 2014, 30, 14782-14788.	3.5	2
115	DMF as Carbon Source: Rh-Catalyzed î±-Methylation of Ketones. Organic Letters, 2014, 16, 66-69.	4.6	101
116	Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chemistry, 2014, 16, 1093-1096.	9.0	75
117	The photodimerization characteristics of anthracene pendants within amphiphilic polymer micelles in aqueous solution. RSC Advances, 2014, 4, 25912-25915.	3.6	21
118	Hydrophobic conjugated microporous polymer as a novel adsorbent for removal of volatile organic compounds. Journal of Materials Chemistry A, 2014, 2, 14028-14037.	10.3	52
119	A General Method for Nâ€Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry - A European Journal, 2014, 20, 58-63.	3.3	124
120	Removal of cobalt(II) ion from aqueous solution by chitosan–montmorillonite. Journal of Environmental Sciences, 2014, 26, 1879-1884.	6.1	81
121	Insights into the vanadia catalyzed oxidative dehydrogenation of isobutane with CO2. Chinese Journal of Catalysis, 2014, 35, 1329-1336.	14.0	13
122	Adsorption–template preparation of polyanilines with different morphologies and their capacitance. Electrochimica Acta, 2014, 145, 99-108.	5.2	43
123	Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites. Materials Research Bulletin, 2014, 59, 131-136.	5.2	13
124	High-performance Ni–SiO2 for pressurized carbon dioxide reforming of methane. International Journal of Hydrogen Energy, 2014, 39, 11592-11605.	7.1	29
125	Effects of various factors on the modification of carbon nanotubes with polyvinyl alcohol in supercritical CO2 and their application in electrospun fibers. Chemical Research in Chinese Universities, 2014, 30, 690-697.	2.6	5
126	Sutures modified by silver-loaded montmorillonite with antibacterial properties. Applied Clay Science, 2014, 93-94, 102-106.	5.2	41

#	Article	IF	Citations
127	Synthesis of TiO2/ramie fiber composite and its photocatalytic effect on the degradation of a dye in wastewater. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 515-528.	1.7	0
128	Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. Journal of Materials Chemistry A, 2013, 1, 6393.	10.3	160
129	Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite. Journal of Colloid and Interface Science, 2013, 396, 251-257.	9.4	73
130	Cobalt Supported on Alkaline-Activated Montmorillonite as an Efficient Catalyst for Fischer–Tropsch Synthesis. Energy & Company (1988) Energy & Com	5.1	22
131	One-Step, Continuous-Flow, Highly Catalytic Hydrogenation–Isomerization of Dicyclopentadiene to <i>>exo</i> -Tetrahydrodicyclopentadiene over Ni-Supported Catalysts for the Production of High-Energy-Density Fuel. Energy & Density Fuels, 2013, 27, 6339-6347.	5.1	23
132	Highly enantioselective catalytic domino reaction: Synthesis of (R)-2-phenyl-2H-thiochromene-3-carbaldehyde in supercritical carbon dioxide. Russian Journal of Organic Chemistry, 2013, 49, 1854-1856.	0.8	4
133	Insights into the unexpected formation of hexamethylbenzene during steam reforming of dimethyl ether over zeolite-based bifunctional catalysts. Catalysis Today, 2013, 210, 75-80.	4.4	2
134	Promotional effects and mechanism of second cations on activity and stability of Co-MOR for nitrous oxide decomposition: UV–Vis spectroscopy and EXAFS analysis. Chemical Engineering Journal, 2013, 226, 95-104.	12.7	10
135	Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2013, 134-135, 381-388.	20.2	52
136	Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations. Fuel, 2013, 109, 33-42.	6.4	19
137	Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels. Energy & Energy & 2013, 27, 6335-6338.	5.1	43
138	(S)-5-prolylamide-triazole Organocatalyst for Direct Asymmetric Aldol Reactions. Current Organic Chemistry, 2013, 17, 1563-1568.	1.6	4
139	Carbon Fibers/Poly(trifluoroethyl methacrylate) Composites Synthesized under Supercritical CO2. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 828-833.	2.2	3
140	Alumina Grafted to SBA-15 in Supercritical CO ₂ as a Support of Cobalt for Fischer–Tropsch Synthesis. Energy & Samp; Fuels, 2012, 26, 6567-6575.	5.1	23
141	Selective Hydrogenation of Cinnamaldehyde over Pt and Pd Supported on Multiwalled Carbon Nanotubes in a CO ₂ -Expanded Alcoholic Medium. Industrial & Engineering Chemistry Research, 2012, 51, 11112-11121.	3.7	46
142	Porous Montmorillonite Heterostructures Directed by a Single Alkyl Ammonium Template for Controlling the Product Distribution of Fischer–Tropsch Synthesis over Cobalt. Chemistry of Materials, 2012, 24, 972-974.	6.7	38
143	Carboxylic acid anhydrides viaPd-catalyzed carbonylation of aryl halides at atmospheric CO pressure. Chemical Communications, 2012, 48, 1320-1322.	4.1	34
144	Insights into Structural and Chemical Properties of Activated Montmorillonite for Fischer-Tropsch Synthesis over Supported Cobalt Catalysts. ACS Symposium Series, 2012, , 167-193.	0.5	7

#	Article	IF	CITATIONS
145	Intermolecular-Interaction-Dominated Solvation Behaviors of Liquid Monomers and Polymers in Gaseous and Supercritical Carbon Dioxide. Macromolecules, 2012, 45, 4907-4919.	4.8	23
146	Functional graphene nanocomposite as an electrode for the capacitive removal of FeCl3 from water. Journal of Materials Chemistry, 2012, 22, 14101.	6.7	48
147	Direct Asymmetric Aldol Reactions Catalyzed by L-Proline/PEG/SiO ₂ Composite Catalyst. Synthetic Communications, 2012, 42, 1559-1566.	2.1	5
148	Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite. Chemical Engineering Journal, 2012, 187, 299-305.	12.7	33
149	Supercritical Fluid and its Application. , 2012, , .		O
150	Oxidative Dehydrogenation of Ethylbenzene with CO2. , 2012, , .		0
151	The [Bmim] < sub > 4 < / sub > W < sub > 10 < / sub > 0 < sub > 23 < / sub > Catalyzed Oxidation of 3,4-Diaminofurazan to 3,4-Dinitrofurazan in Hydrogen Peroxide. Industrial & amp; Engineering Chemistry Research, 2011, 50, 6615-6619.	3.7	9
152	Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol over Ce _{<i>x</i>} Zr _{1-<i>x</i>} O ₂ and [EMIM]Br/Ce _{0.5} Zr _{0.5} O ₂ . Industrial & Engineering Chemistry Research, 2011, 50, 1981-1988.	3.7	82
153	Morphology effects of Co3O4 on the catalytic activity of Au/Co3O4 catalysts for complete oxidation of trace ethylene. Catalysis Communications, 2011, 12, 1265-1268.	3.3	70
154	Fischer–Tropsch synthesis over Co/montmorillonite—Insights into the role of interlayer exchangeable cations. Applied Catalysis A: General, 2011, 405, 45-54.	4.3	19
155	V ₂ O ₅ /Ce _{0.6} Zr _{0.4} O ₂ â€Al ₂ O ₂ Csub>2â€Al ₂ O ₂ ChemSusChem, 2011, 4, 341-345.	3	38
156	Synthesis of mesoporous MCM-48 using fumed silica and mixed surfactants. Microporous and Mesoporous Materials, 2010, 131, 224-229.	4.4	37
157	L-Proline catalyzed aldol reactions between acetone and aldehydes in supercritical fluids: An environmentally friendly reaction procedure. Science China Chemistry, 2010, 53, 1586-1591.	8.2	12
158	Cellulose acetate membrane synthesis from biomass of ramie. Journal of Applied Polymer Science, 2010, 117, 588-595.	2.6	4
159	Grafting of polystyrene and poly(<i>p</i> à€ehlorostyrene) from the surface of ramie fiber via RAFT polymerization. Journal of Applied Polymer Science, 2010, 117, 3551-3557.	2.6	1
160	Grafting modification of ramie fibers with poly(2,2,2-trifluoroethyl methacrylate) via reversible addition–fragmentation chain transfer (RAFT) polymerization in supercritical carbon dioxide. Reactive and Functional Polymers, 2010, 70, 972-979.	4.1	42
161	Preparation and application of cellulose triacetate microspheres. Journal of Hazardous Materials, 2010, 177, 452-457.	12.4	17
162	The dehydrogenation of ethylbenzene with CO2 over V2O5/CexZr1â^'xO2 prepared with different methods. Journal of Molecular Catalysis A, 2010, 329, 64-70.	4.8	19

#	Article	IF	Citations
163	Synthesis and Characterization of Thermo-responsive Poly(<i>N</i> -isopropylacrylamide) Micelles. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1026-1031.	2.2	1
164	A general method for faithful replication of keratin fibers with metal oxides. Journal of Materials Chemistry, 2010, 20, 10107.	6.7	8
165	Co/Pillared Clay Bifunctional Catalyst for Controlling the Product Distribution of Fischerâ^'Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2010, 49, 9004-9011.	3.7	20
166	Modification of ramie fiber with an amine ontaining polymer via atom transfer radical polymerization. Journal of Applied Polymer Science, 2009, 113, 3612-3618.	2.6	9
167	Acetylation of \hat{l}^2 -cyclodextrin in ionic liquid green solvent. Journal of Materials Science, 2009, 44, 1813-1820.	3.7	19
168	DMC Formation over Ce0.5Zr0.5O2 Prepared by Complex-decomposition Method. Catalysis Letters, 2009, 129, 428-436.	2.6	40
169	The Contact State Related Phenomena of Hybrid Catalysts for the Modified Fischer-Tropsch Synthesis. Catalysis Letters, 2009, 131, 388-392.	2.6	7
170	Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose, 2009, 16, 1133-1145.	4.9	36
171	Particles from bird feather: A novel application of an ionic liquid and waste resource. Journal of Hazardous Materials, 2009, 170, 786-790.	12.4	91
172	Synthesis and catalytic behaviors of cobalt nanocrystals with special morphologies. Powder Technology, 2009, 189, 514-519.	4.2	40
173	Hydrogen production via partial oxidation and reforming of dimethyl ether. Catalysis Today, 2009, 146, 50-56.	4.4	29
174	Poly(vinyl alcohol) Functionalized \hat{l}^2 -Cyclodextrin as an Inclusion Complex. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 533-540.	2.2	17
175	Cellulose Triacetate Optical Film Preparation from Ramie Fiber. Industrial & Engineering Chemistry Research, 2009, 48, 6212-6215.	3.7	30
176	Solubilities of <scp>l</scp> -Proline in Subcritical HFC-134a and Supercritical CO ₂ Fluids. Journal of Chemical & Data, 2009, 54, 2780-2784.	1.9	12
177	Chemically Modified Chicken Feather as Sorbent for Removing Toxic Chromium(VI) Ions. Industrial & Lamp; Engineering Chemistry Research, 2009, 48, 6882-6889.	3.7	54
178	Synthesis and characterization of two bis (\hat{l} -5-methylcyclopentadienyl)hydroxynaphthoatotitanium complexes. Journal of Coordination Chemistry, 2009, 62, 1594-1603.	2.2	3
179	Benzylated modification and dyeing of ramie fiber in supercritical carbon dioxide. Journal of Applied Polymer Science, 2008, 107, 1872-1878.	2.6	16
180	Adjustable wettability of methyl methacrylate modified ramie fiber. Journal of Applied Polymer Science, 2008, 109, 2888-2894.	2.6	34

#	Article	IF	Citations
181	Novel ionic liquid assisted synthesis of SnO2 microspheres. Journal of Colloid and Interface Science, 2008, 319, 115-122.	9.4	55
182	In situ source–template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells. Journal of Colloid and Interface Science, 2008, 323, 365-371.	9.4	28
183	Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires. Journal of Crystal Growth, 2008, 310, 4628-4634.	1.5	36
184	Selective hydrogenation of cinnamaldehyde over Pt-supported multi-walled carbon nanotubes: Insights into the tube-size effects. Applied Catalysis A: General, 2008, 344, 114-123.	4.3	72
185	Study on the performance of ramie fiber modified with ethylenediamine. Carbohydrate Polymers, 2008, 71, 18-25.	10.2	70
186	lonic liquid as an efficient promoting medium for synthesis of dimethyl carbonate by oxidative carbonylation of methanol. Applied Catalysis A: General, 2008, 334, 100-105.	4.3	33
187	New Process for Synthesizing Fluorinated Polymers in Supercritical Carbon Dioxide. Macromolecules, 2008, 41, 6987-6992.	4.8	29
188	Phase Behaviors of Aerosol-OT Analogue Fluorinated Surfactants in 1,1,1,2-Tetrafluoroethane and Supercritical CO2. Industrial & Engineering Chemistry Research, 2007, 46, 22-28.	3.7	8
189	Preparation and characterization of highly dispersed nanocrystalline rutile powders. Materials Letters, 2007, 61, 2798-2803.	2.6	1
190	Study on the cationic modification and dyeing of ramie fiber. Cellulose, 2007, 14, 337-345.	4.9	75
191	A green route to prepare cellulose acetate particle from ramie fiber. Reactive and Functional Polymers, 2007, 67, 104-112.	4.1	22
192	Phase behavior of novel fluorinated surfactants in supercritical carbon dioxide. Green Chemistry, 2006, 8, 978.	9.0	5
193	Supercritical CO2Dyeing of Ramie Fiber with Disperse Dye. Industrial & Engineering Chemistry Research, 2006, 45, 8932-8938.	3.7	52
194	Solubilities of AOT Analogues Surfactants in Supercritical CO2and HFC-134a Fluids. Journal of Chemical & Co2and Co2and Co2and HFC-134a Fluids. Journal of Chemical & Co2and Co2and HFC-134a Fluids. Journal of Chemical & Co2and HFC-134a Fluids. Journal of	1.9	7
195	Solubility and Phase Behaviors of AOT Analogue Surfactants in 1,1,1,2-Tetrafluoroethane and Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2006, 51, 2045-2050.	1.9	9
196	Syntheses and supramolecular structures of two 5-nitrosalicylate titanocene complexes. Applied Organometallic Chemistry, 2006, 20, 117-124.	3.5	11
197	Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Surface Sediments from the Estuary Area of Yangtze River, People's Republic of China. Bulletin of Environmental Contamination and Toxicology, 2005, 75, 910-914.	2.7	14
198	Water in Carbon Dioxide Microemulsions with Fluorinated Analogues of AOT. Langmuir, 2001, 17, 274-277.	3.5	83

#	Article	IF	CITATIONS
199	The nickel-catalyzed hydroesterification of acetylene with methyl formate to methyl acrylate. Applied Catalysis A: General, 1998, 173, 11-17.	4.3	15
200	Deactivation model of Fischer-Tropsch synthesis over an FeCuK commercial catalyst. Applied Catalysis A: General, 1997, 161, 137-151.	4.3	20
201	MOSSBAUER STUDY OF Fe-Cu-K CATALYST FOR FISCHER-TROPSCH SYNTHESIS. Petroleum Science and Technology, 1996, 14, 805-820.	0.2	2
202	EFFECTS OF OXYGEN ON THE FT SYNTHESIS OVER Fe-Cu-K CATALYST. Petroleum Science and Technology, 1995, 13, 215-223.	0.2	2
203	XPS STUDY OF IRON CATALYSTS FOR FISCHER-TROPSCH SYNTHESIS. Petroleum Science and Technology, 1995, 13, 559-567.	0.2	3
204	Intrinsic kinetics of Fischer–Tropsch synthesis over an Fe–Cu–K catalyst. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3255-3261.	1.7	16
205	Polyacrylonitrile coated silica as support for copper catalyst in methanol dehydrogenation to methyl formate. Applied Catalysis A: General, 1994, 118, 163-171.	4.3	18
206	Oxidative Dehydrogenation of Propane with Carbon Dioxide Catalyzed by ZnxZr1–xO2–x Solid Solutions. Industrial & Engineering Chemistry Research, 0, , .	3.7	11