Zhao-Tie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6275326/publications.pdf

Version: 2024-02-01

206 papers 4,632 citations

36 h-index 53 g-index

219 all docs

219 docs citations

219 times ranked 5744 citing authors

#	Article	IF	CITATIONS
1	Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. Journal of Materials Chemistry A, 2013, 1, 6393.	10.3	160
2	A General Method for Nâ€Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry - A European Journal, 2014, 20, 58-63.	3 . 3	124
3	DMF as Carbon Source: Rh-Catalyzed α-Methylation of Ketones. Organic Letters, 2014, 16, 66-69.	4.6	101
4	Particles from bird feather: A novel application of an ionic liquid and waste resource. Journal of Hazardous Materials, 2009, 170, 786-790.	12.4	91
5	Water in Carbon Dioxide Microemulsions with Fluorinated Analogues of AOT. Langmuir, 2001, 17, 274-277.	3.5	83
6	Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol over Ce _{<i>x</i>} Zr _{1-<i>x</i>} O ₂ and [EMIM]Br/Ce _{0.5} Zr _{0.5} O ₂ . Industrial & Engineering Chemistry Research, 2011, 50, 1981-1988.	3.7	82
7	Removal of cobalt(II) ion from aqueous solution by chitosan–montmorillonite. Journal of Environmental Sciences, 2014, 26, 1879-1884.	6.1	81
8	Study on the cationic modification and dyeing of ramie fiber. Cellulose, 2007, 14, 337-345.	4.9	75
9	Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chemistry, 2014, 16, 1093-1096.	9.0	75
10	Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite. Journal of Colloid and Interface Science, 2013, 396, 251-257.	9.4	73
11	Selective hydrogenation of cinnamaldehyde over Pt-supported multi-walled carbon nanotubes: Insights into the tube-size effects. Applied Catalysis A: General, 2008, 344, 114-123.	4.3	72
12	Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams. Chemical Engineering Journal, 2015, 281, 34-41.	12.7	72
13	Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. Journal of Catalysis, 2019, 369, 143-156.	6.2	72
14	Study on the performance of ramie fiber modified with ethylenediamine. Carbohydrate Polymers, 2008, 71, 18-25.	10.2	70
15	Morphology effects of Co3O4 on the catalytic activity of Au/Co3O4 catalysts for complete oxidation of trace ethylene. Catalysis Communications, 2011, 12, 1265-1268.	3.3	70
16	Novel ionic liquid assisted synthesis of SnO2 microspheres. Journal of Colloid and Interface Science, 2008, 319, 115-122.	9.4	55
17	Chemically Modified Chicken Feather as Sorbent for Removing Toxic Chromium(VI) Ions. Industrial & Lamp; Engineering Chemistry Research, 2009, 48, 6882-6889.	3.7	54
18	Supercritical CO2Dyeing of Ramie Fiber with Disperse Dye. Industrial & Engineering Chemistry Research, 2006, 45, 8932-8938.	3.7	52

#	Article	IF	CITATIONS
19	Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2013, 134-135, 381-388.	20.2	52
20	Hydrophobic conjugated microporous polymer as a novel adsorbent for removal of volatile organic compounds. Journal of Materials Chemistry A, 2014, 2, 14028-14037.	10.3	52
21	The formation and physicochemical properties of PEGylated deep eutectic solvents. New Journal of Chemistry, 2019, 43, 8804-8810.	2.8	51
22	Insights into CeO2-modified Ni–Mg–Al oxides for pressurized carbon dioxide reforming of methane. Chemical Engineering Journal, 2015, 259, 581-593.	12.7	50
23	Functional graphene nanocomposite as an electrode for the capacitive removal of FeCl3 from water. Journal of Materials Chemistry, 2012, 22, 14101.	6.7	48
24	Selective Hydrogenation of Cinnamaldehyde over Pt and Pd Supported on Multiwalled Carbon Nanotubes in a CO ₂ -Expanded Alcoholic Medium. Industrial & Discrete Engineering Chemistry Research, 2012, 51, 11112-11121.	3.7	46
25	Photoresponsive Shape Memory Hydrogels for Complex Deformation and Solvent-Driven Actuation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6407-6418.	8.0	46
26	Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product. Nature Communications, 2021, 12, 2305.	12.8	45
27	Copperâ€Catalyzed Coupling of Indoles with Dimethylformamide as a Methylenating Reagent. Advanced Synthesis and Catalysis, 2016, 358, 539-542.	4.3	44
28	Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels. Energy & Sustainable Transportation Fuels.	5.1	43
29	Adsorption–template preparation of polyanilines with different morphologies and their capacitance. Electrochimica Acta, 2014, 145, 99-108.	5.2	43
30	Active and selective nature of supported CrOx for the oxidative dehydrogenation of propane with carbon dioxide. Applied Catalysis B: Environmental, 2021, 297, 120400.	20.2	43
31	Grafting modification of ramie fibers with poly(2,2,2-trifluoroethyl methacrylate) via reversible addition–fragmentation chain transfer (RAFT) polymerization in supercritical carbon dioxide. Reactive and Functional Polymers, 2010, 70, 972-979.	4.1	42
32	Sutures modified by silver-loaded montmorillonite with antibacterial properties. Applied Clay Science, 2014, 93-94, 102-106.	5.2	41
33	DMC Formation over Ce0.5Zr0.5O2 Prepared by Complex-decomposition Method. Catalysis Letters, 2009, 129, 428-436.	2.6	40
34	Synthesis and catalytic behaviors of cobalt nanocrystals with special morphologies. Powder Technology, 2009, 189, 514-519.	4.2	40
35	V ₂ O ₅ /Ce _{0.6} Zr _{0.4} O ₂ â€Al ₂ O _{as an Efficient Catalyst for the Oxidative Dehydrogenation of Ethylbenzene with Carbon Dioxide. ChemSusChem, 2011, 4, 341-345.}	3	38
36	Porous Montmorillonite Heterostructures Directed by a Single Alkyl Ammonium Template for Controlling the Product Distribution of Fischer–Tropsch Synthesis over Cobalt. Chemistry of Materials, 2012, 24, 972-974.	6.7	38

#	Article	IF	Citations
37	Synthesis of mesoporous MCM-48 using fumed silica and mixed surfactants. Microporous and Mesoporous Materials, 2010, 131, 224-229.	4.4	37
38	lonic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires. Journal of Crystal Growth, 2008, 310, 4628-4634.	1.5	36
39	Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose, 2009, 16, 1133-1145.	4.9	36
40	Adjustable wettability of methyl methacrylate modified ramie fiber. Journal of Applied Polymer Science, 2008, 109, 2888-2894.	2.6	34
41	Carboxylic acid anhydrides viaPd-catalyzed carbonylation of aryl halides at atmospheric CO pressure. Chemical Communications, 2012, 48, 1320-1322.	4.1	34
42	Hydrogen production by sorption-enhanced steam reforming of acetic acid over Ni/Ce x Zr 1â^'x O 2 -CaO catalysts. International Journal of Hydrogen Energy, 2017, 42, 7786-7797.	7.1	34
43	Constructing of ultrathin Bi2WO6/BiOCl nanosheets with oxygen vacancies for photocatalytic oxidation of cyclohexane with air in solvent-free. Applied Surface Science, 2022, 584, 152606.	6.1	34
44	lonic liquid as an efficient promoting medium for synthesis of dimethyl carbonate by oxidative carbonylation of methanol. Applied Catalysis A: General, 2008, 334, 100-105.	4.3	33
45	Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite. Chemical Engineering Journal, 2012, 187, 299-305.	12.7	33
46	Photothermal CO2 hydrogenation to methanol over a CoO/Co/TiO2 catalyst in aqueous media under atmospheric pressure. Catalysis Today, 2020, 356, 579-588.	4.4	32
47	Selective hydrogenation of quinolines over a CoCu bimetallic catalyst at low temperature. Molecular Catalysis, 2019, 470, 120-126.	2.0	31
48	Cellulose Triacetate Optical Film Preparation from Ramie Fiber. Industrial & Engineering Chemistry Research, 2009, 48, 6212-6215.	3.7	30
49	2D-to-3D Shape Transformation of Room-Temperature-Programmable Shape-Memory Polymers through Selective Suppression of Strain Relaxation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40189-40197.	8.0	30
50	New Process for Synthesizing Fluorinated Polymers in Supercritical Carbon Dioxide. Macromolecules, 2008, 41, 6987-6992.	4.8	29
51	Hydrogen production via partial oxidation and reforming of dimethyl ether. Catalysis Today, 2009, 146, 50-56.	4.4	29
52	High-performance Ni–SiO2 for pressurized carbon dioxide reforming of methane. International Journal of Hydrogen Energy, 2014, 39, 11592-11605.	7.1	29
53	Defect-rich Ce1-xZrxO2 solid solutions for oxidative dehydrogenation of ethylbenzene with CO2. Catalysis Today, 2019, 324, 39-48.	4.4	29
54	A Thermo―and Moistureâ€Responsive Zwitterionic Shape Memory Polymer for Novel Selfâ€Healable Wound Dressing Applications. Macromolecular Materials and Engineering, 2019, 304, 1800603.	3.6	29

#	Article	IF	CITATIONS
55	Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration. Chemical Engineering Journal, 2019, 358, 467-479.	12.7	29
56	Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,Nâ€∢i>tri⟨i>â€Doped Hierarchically Porous Carbon Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 21479-21485.	13.8	29
57	Photoprogrammable Moisture-Responsive Actuation of a Shape Memory Polymer Film. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10836-10843.	8.0	29
58	In situ source–template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells. Journal of Colloid and Interface Science, 2008, 323, 365-371.	9.4	28
59	Oxidative Heck Reaction of Fluorinated Olefins with Arylboronic Acids by Palladium Catalysis. European Journal of Organic Chemistry, 2015, 2015, 4340-4343.	2.4	28
60	Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane. Journal of CO2 Utilization, 2020, 38, 306-313.	6.8	28
61	Electrocatalytic CO ₂ reduction to ethylene over ZrO ₂ /Cu-Cu ₂ O catalysts in aqueous electrolytes. Green Chemistry, 2022, 24, 1527-1533.	9.0	28
62	Metal-support interactions regulated via carbon coating – A case study of Co/SiO2 for Fischer-Tropsch synthesis. Fuel, 2018, 226, 213-220.	6.4	27
63	Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt. Fuel Processing Technology, 2015, 136, 87-95.	7.2	26
64	A superhydrophobic hyper-cross-linked polymer synthesized at room temperature used as an efficient adsorbent for volatile organic compounds. RSC Advances, 2016, 6, 97048-97054.	3.6	26
65	Highly Efficient Rhodium-Catalyzed Transfer Hydrogenation of Nitroarenes into Amines and Formanilides. Synlett, 2014, 25, 1295-1298.	1.8	25
66	Highly Active and Stable Ni–SiO ₂ Prepared by a Complex-Decomposition Method for Pressurized Carbon Dioxide Reforming of Methane. Industrial & Engineering Chemistry Research, 2014, 53, 19077-19086.	3.7	25
67	Nickel-catalyzed carbonylation of arylboronic acids with DMF as a CO source. Organic Chemistry Frontiers, 2017, 4, 569-572.	4.5	25
68	Programmable Humidity-Responsive Actuation of Polymer Films Enabled by Combining Shape Memory Property and Surface-Tunable Hygroscopicity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38773-38782.	8.0	25
69	Palladium atalyzed Direct Cross oupling of Carboranyllithium with (Hetero)Aryl Halides. Chemistry - A European Journal, 2016, 22, 17542-17546.	3.3	24
70	Photothermal CO ₂ hydrogenation to hydrocarbons over trimetallic Co–Cu–Mn catalysts. Green Chemistry, 2021, 23, 5775-5785.	9.0	24
71	Alumina Grafted to SBA-15 in Supercritical CO ₂ as a Support of Cobalt for Fischer–Tropsch Synthesis. Energy & Fuels, 2012, 26, 6567-6575.	5.1	23
72	Intermolecular-Interaction-Dominated Solvation Behaviors of Liquid Monomers and Polymers in Gaseous and Supercritical Carbon Dioxide. Macromolecules, 2012, 45, 4907-4919.	4.8	23

#	Article	IF	CITATIONS
73	One-Step, Continuous-Flow, Highly Catalytic Hydrogenation–Isomerization of Dicyclopentadiene to <i>exo</i> -Tetrahydrodicyclopentadiene over Ni-Supported Catalysts for the Production of High-Energy-Density Fuel. Energy & Fuels, 2013, 27, 6339-6347.	5.1	23
74	Understanding the active-site nature of vanadia-based catalysts for oxidative dehydrogenation of ethylbenzene with CO2 via atomic layer deposited VOx on \hat{I}^3 -Al2O3. Journal of Catalysis, 2019, 380, 195-203.	6.2	23
75	A green route to prepare cellulose acetate particle from ramie fiber. Reactive and Functional Polymers, 2007, 67, 104-112.	4.1	22
76	Cobalt Supported on Alkaline-Activated Montmorillonite as an Efficient Catalyst for Fischer–Tropsch Synthesis. Energy & Synthesis. Energy & Synthesis. Energy & Energy & Synthesis. Ene	5.1	22
77	A High-Performance Ni/SiO ₂ Prepared by the Complexed-Impregnation Method with Citric Acid for Carbon Dioxide Reforming of Methane. Industrial & Engineering Chemistry Research, 2018, 57, 16257-16263.	3.7	22
78	The photodimerization characteristics of anthracene pendants within amphiphilic polymer micelles in aqueous solution. RSC Advances, 2014, 4, 25912-25915.	3.6	21
79	The delaminating and pillaring of MCM-22 for Fischer–Tropsch synthesis over cobalt. Catalysis Today, 2016, 274, 109-115.	4.4	21
80	Catalytic hydrodeoxygenation of biomass-derived oxygenates to bio-fuels over Co-based bimetallic catalysts. Sustainable Energy and Fuels, 2020, 4, 4558-4569.	4.9	21
81	Construction of Indium Oxide/N-Doped Titanium Dioxide Hybrid Photocatalysts for Efficient and Selective Oxidation of Cyclohexane to Cyclohexanone. Journal of Physical Chemistry C, 2021, 125, 19791-19801.	3.1	21
82	Deactivation model of Fischer-Tropsch synthesis over an FeCuK commercial catalyst. Applied Catalysis A: General, 1997, 161, 137-151.	4.3	20
83	Co/Pillared Clay Bifunctional Catalyst for Controlling the Product Distribution of Fischerâ´Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2010, 49, 9004-9011.	3.7	20
84	Research progress of CO2 oxidative dehydrogenation of propane to propylene over Cr-free metal catalysts. Rare Metals, 2022, 41, 2129-2152.	7.1	20
85	Acetylation of \hat{l}^2 -cyclodextrin in ionic liquid green solvent. Journal of Materials Science, 2009, 44, 1813-1820.	3.7	19
86	The dehydrogenation of ethylbenzene with CO2 over V2O5/CexZr1â^'xO2 prepared with different methods. Journal of Molecular Catalysis A, 2010, 329, 64-70.	4.8	19
87	Fischer–Tropsch synthesis over Co/montmorillonite—Insights into the role of interlayer exchangeable cations. Applied Catalysis A: General, 2011, 405, 45-54.	4.3	19
88	Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations. Fuel, 2013, 109, 33-42.	6.4	19
89	Catalytic function of VO _x /Al ₂ O ₃ for oxidative dehydrogenation of propane: support microstructure-dependent mass transfer and diffusion. Catalysis Science and Technology, 2018, 8, 4864-4876.	4.1	19
90	Balancing free and confined metallic Ni for an active and stable catalyst—A case study of CO methanation over Ni/Ni–Al2O3. Journal of Energy Chemistry, 2020, 50, 73-84.	12.9	19

#	Article	IF	Citations
91	Oxidative Dehydrogenation of Propane to Propylene in the Presence of CO ₂ over Gallium Nitride Supported on NaZSM-5. Industrial & Engineering Chemistry Research, 2021, 60, 2807-2817.	3.7	19
92	Polyacrylonitrile coated silica as support for copper catalyst in methanol dehydrogenation to methyl formate. Applied Catalysis A: General, 1994, 118, 163-171.	4.3	18
93	Poly(vinyl alcohol) Functionalized \hat{l}^2 -Cyclodextrin as an Inclusion Complex. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 533-540.	2.2	17
94	Preparation and application of cellulose triacetate microspheres. Journal of Hazardous Materials, 2010, 177, 452-457.	12.4	17
95	Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer–Tropsch synthesis. Fuel Processing Technology, 2015, 138, 116-124.	7.2	17
96	Vanadium Oxide Supported on Titanosilicates for the Oxidative Dehydrogenation of <i>n</i> Butane. Industrial & Samp; Engineering Chemistry Research, 2015, 54, 3602-3610.	3.7	17
97	Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications, 2015, 68, 105-109.	3.3	17
98	Amphiphilic Imbalance and Stabilization of Block Copolymer Micelles onâ€Demand through Combinational Photoâ€Cleavage and Photoâ€Crosslinking. Macromolecular Rapid Communications, 2017, 38, 1600543.	3.9	17
99	Intrinsic kinetics of Fischer–Tropsch synthesis over an Fe–Cu–K catalyst. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3255-3261.	1.7	16
100	Benzylated modification and dyeing of ramie fiber in supercritical carbon dioxide. Journal of Applied Polymer Science, 2008, 107, 1872-1878.	2.6	16
101	Amphiphilic Polymer Micellar Disruption Based on Main-Chain Photodegradation. Langmuir, 2016, 32, 12-18.	3. 5	16
102	The nickel-catalyzed hydroesterification of acetylene with methyl formate to methyl acrylate. Applied Catalysis A: General, 1998, 173, 11-17.	4.3	15
103	Acid activated montmorillonite for gas-phase catalytic dehydration of monoethanolamine. Applied Clay Science, 2019, 168, 116-124.	5.2	15
104	Photo-Dissociable Fe ³⁺ -Carboxylate Coordination: A General Approach toward Hydrogels with Shape Programming and Active Morphing Functionalities. ACS Applied Materials & Interfaces, 2021, 13, 59310-59319.	8.0	15
105	Synthesis of dimethyl carbonate from CO2 and methanol over CeO2 nanoparticles/Co3O4 nanosheets. Fuel, 2022, 325, 124945.	6.4	15
106	Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Surface Sediments from the Estuary Area of Yangtze River, People's Republic of China. Bulletin of Environmental Contamination and Toxicology, 2005, 75, 910-914.	2.7	14
107	Light-Triggered Disruption of PAG-Based Amphiphilic Random Copolymer Micelles. Langmuir, 2015, 31, 7758-7763.	3.5	14
108	Insight into the role of intermolecular interactions on the enhanced solubility of fluorinated epoxide oligomers in supercritical CO ₂ . Green Chemistry, 2015, 17, 4489-4498.	9.0	14

#	Article	IF	CITATIONS
109	Effect of ultrasonic treatment of palygorskite on the catalytic performance of Pd-Cu/palygorskite catalyst for room temperature CO oxidation in humid circumstances. Environmental Technology (United Kingdom), 2018, 39, 780-786.	2.2	14
110	Rubber-like composites with tunable thermal- and photo-responsive shape memory properties. Chemical Engineering Journal, 2022, 447, 137534.	12.7	14
111	Insights into the vanadia catalyzed oxidative dehydrogenation of isobutane with CO2. Chinese Journal of Catalysis, 2014, 35, 1329-1336.	14.0	13
112	Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites. Materials Research Bulletin, 2014, 59, 131-136.	5.2	13
113	Photo-induced dynamic association of coumarin pendants within amphiphilic random copolymer micelles. Colloid and Polymer Science, 2015, 293, 823-831.	2.1	13
114	Catalytic behavior of manganese oxides for oxidative dehydrogenation of ethylbenzene with carbon dioxide. Journal of CO2 Utilization, 2017, 22, 63-70.	6.8	13
115			

#	Article	IF	Citations
127	Promotional effects and mechanism of second cations on activity and stability of Co-MOR for nitrous oxide decomposition: UV–Vis spectroscopy and EXAFS analysis. Chemical Engineering Journal, 2013, 226, 95-104.	12.7	10
128	2-Nitrobenzyl Borate Based Photolabile Linker for Breakable Polymer Vesicles. Macromolecular Rapid Communications, 2016, 37, 514-520.	3.9	10
129	Highly active K-promoted Cu/\hat{l}^2 -Mo2C catalysts for reverse water gas shift reaction: Effect of potassium. Molecular Catalysis, 2021, 516, 111954.	2.0	10
130	Understanding the Role of Fe Doping in Tuning the Size and Dispersion of GaN Nanocrystallites for CO ₂ -Assisted Oxidative Dehydrogenation of Propane. ACS Catalysis, 2022, 12, 8527-8543.	11.2	10
131	Solubility and Phase Behaviors of AOT Analogue Surfactants in 1,1,1,2-Tetrafluoroethane and Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2006, 51, 2045-2050.	1.9	9
132	Modification of ramie fiber with an amineâ€containing polymer via atom transfer radical polymerization. Journal of Applied Polymer Science, 2009, 113, 3612-3618.	2.6	9
133	The [Bmim] ₄ W ₁₀ O ₂₃ Catalyzed Oxidation of 3,4-Diaminofurazan to 3,4-Dinitrofurazan in Hydrogen Peroxide. Industrial & Engineering Chemistry Research, 2011, 50, 6615-6619.	3.7	9
134	Key Factors on the Pressurized Tri-Reforming of Methane over Ni-SiO2. ACS Symposium Series, 2015, , 155-169.	0.5	9
135	Palladium-catalyzed Suzuki–Miyaura reaction of fluorinated vinyl chloride: a new approach for synthesis α and α,β-trifluoromethylstyrenes. Tetrahedron, 2016, 72, 5684-5690.	1.9	9
136	Fabricating Triple-Sensitive Polymer Nano-Aggregates via an Aqueous Iminoboronate Multicomponent Reaction. Macromolecular Rapid Communications, 2017, 38, 1600805.	3.9	9
137	A combined experimental and theoretical study of the thermal decomposition mechanism and kinetics of ammonium dinitramide (ADN). New Journal of Chemistry, 2020, 44, 6833-6844.	2.8	9
138	Photothermal oxidation of cyclohexane over CoLaOx/WO3 Z-scheme composites with p-n heterojunction in solvent-free conditions. Catalysis Today, 2023, 409, 42-52.	4.4	9
139	Phase Behaviors of Aerosol-OT Analogue Fluorinated Surfactants in 1,1,1,2-Tetrafluoroethane and Supercritical CO2. Industrial & Engineering Chemistry Research, 2007, 46, 22-28.	3.7	8
140	A general method for faithful replication of keratin fibers with metal oxides. Journal of Materials Chemistry, 2010, 20, 10107.	6.7	8
141	Density functional theory study on the reaction of triazol-3-one with nitronium: direct nitration versus acidic group-induced nitration. RSC Advances, 2015, 5, 25183-25191.	3.6	8
142	Construction of β-Trifluoromethyl Enol Ether via Base-Promoted C–O Coupling and Rearrangement of Hydrogen Atom. Journal of Organic Chemistry, 2017, 82, 4721-4728.	3.2	8
143	Immobilization of Cyclometalated Iridium Complex onto Multiwalled Carbon Nanotubes for Dehydrogenation of Indolines in Aqueous Solution. Industrial & Engineering Chemistry Research, 2017, 56, 11413-11421.	3.7	8
144	Controlled 3D Shape Transformation Activated by Room Temperature Stretching and Release of a Flat Polymer Sheet. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30308-30316.	8.0	8

#	Article	IF	Citations
145	Biomass-Modified Zirconium-Based Catalyst for One-Pot Reductive Etherification of Bioderived Aldehydes to Furanic Diether. ACS Sustainable Chemistry and Engineering, 2022, 10, 4969-4979.	6.7	8
146	Solubilities of AOT Analogues Surfactants in Supercritical CO2and HFC-134a Fluids. Journal of Chemical & Co2and Schemical & Co2and & Co	1.9	7
147	The Contact State Related Phenomena of Hybrid Catalysts for the Modified Fischer-Tropsch Synthesis. Catalysis Letters, 2009, 131, 388-392.	2.6	7
148	Insights into Structural and Chemical Properties of Activated Montmorillonite for Fischer-Tropsch Synthesis over Supported Cobalt Catalysts. ACS Symposium Series, 2012, , 167-193.	0.5	7
149	Perfectly Alternating Copolymerization of Propylene Oxide and CO ₂ over SalenCo/SalenCr Complexes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 589-597.	2.2	7
150	Controlled radical polymerization of fluorinated methacrylates in supercritical <scp>CO</scp> ₂ : Synthesis and application of a novel <scp>RAFT</scp> agent. Journal of Polymer Science Part A, 2016, 54, 825-834.	2.3	7
151	Direct Synthesis of the Reduced Co–C/SiO ₂ As an Efficient Catalyst for Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2018, 57, 1137-1145.	3.7	7
152	Reversible aerobic oxidative dehydrogenation/hydrogenation of N-heterocycles over AlN supported redox cobalt catalysts. Molecular Catalysis, 2020, 496, 111192.	2.0	7
153	Regioisomerized atom transfer radical addition (ATRA) of olefins with dichlorofluorocarbons. RSC Advances, 2015, 5, 101412-101415.	3.6	6
154	Palladium catalyzed mono and difunctionalization of hexafluorobut-2-yne. Tetrahedron Letters, 2016, 57, 4345-4347.	1.4	6
155	Cobalt supported on Zr-modified SiO ₂ as an efficient catalyst for Fischer–Tropsch synthesis. RSC Advances, 2017, 7, 24157-24162.	3.6	6
156	Controlling CO ₂ â€Responsive Behaviors of Polymersomes Selfâ€Assembled by Coumarinâ€Containing Star Polymer via Regulating Its Crosslinking Pattern. Macromolecular Rapid Communications, 2018, 39, e1800009.	3.9	6
157	Backboneâ€Based LCSTâ€Type Hyperbranched Poly(oligo(ethylene glycol)) with CO ₂ â€Reversible Iminoboronate Linkers. Macromolecular Chemistry and Physics, 2018, 219, 1800346.	2.2	6
158	Flame-spray-pyrolysis amorphous alumina-silica for tailoring the product distribution of Fischer-Tropsch synthesis. Catalysis Today, 2020, 339, 40-47.	4.4	6
159	Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance. Journal of Nanostructure in Chemistry, 2022, 12, 1075-1087.	9.1	6
160	Phase behavior of novel fluorinated surfactants in supercritical carbon dioxide. Green Chemistry, 2006, 8, 978.	9.0	5
161	Direct Asymmetric Aldol Reactions Catalyzed by L-Proline/PEG/SiO ₂ Composite Catalyst. Synthetic Communications, 2012, 42, 1559-1566.	2.1	5
162	Effects of various factors on the modification of carbon nanotubes with polyvinyl alcohol in supercritical CO2 and their application in electrospun fibers. Chemical Research in Chinese Universities, 2014, 30, 690-697.	2.6	5

#	Article	IF	CITATIONS
163	Modeling and simulation of an improved ammonia-based desulfurization process for Claus tail gas treatment. RSC Advances, 2017, 7, 23591-23599.	3.6	5
164	The Active Nature of Crystal MoS ₂ for Converting Sulfurâ€Containing Syngas. ChemCatChem, 2019, 11, 1112-1122.	3.7	5
165	Precious metal nanoparticles supported on KOH pretreated activated carbon under microwave radiation as a catalyst for selective hydrogenation of cinnamaldehyde. Canadian Journal of Chemical Engineering, 2019, 97, 2505-2515.	1.7	5
166	Insights into the Oxidative Dehydrogenation of Ethylbenzene with CO2 Catalyzed by the Ordered Mesoporous V2O5–Ce0.5Zr0.5O2–Al2O3. Industrial & Engineering Chemistry Research, 2019, 58, 21372-21381.	3.7	5
167	Iminoboronate Backboneâ€Based Hyperbranched Polymeric Micelles with Fentonâ€Like Enhanced ROS Response. Macromolecular Chemistry and Physics, 2020, 221, 2000022.	2.2	5
168	Elucidating the Support-Size Effect on the Catalytic Stability of CrOx/Silicalite-1 for Oxidative Dehydrogenation of Propane with CO2. Catalysis Letters, 2023, 153, 790-804.	2.6	5
169	Light-Guided Growth of Gradient Hydrogels with Programmable Geometries and Thermally Responsive Actuations. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29188-29196.	8.0	5
170	Cellulose acetate membrane synthesis from biomass of ramie. Journal of Applied Polymer Science, 2010, 117, 588-595.	2.6	4
171	Highly enantioselective catalytic domino reaction: Synthesis of (R)-2-phenyl-2H-thiochromene-3-carbaldehyde in supercritical carbon dioxide. Russian Journal of Organic Chemistry, 2013, 49, 1854-1856.	0.8	4
172	CO2-Acidolysis of iminoboronate ester based polymersomes. Journal of Materials Chemistry B, 2018, 6, 7800-7804.	5.8	4
173	Nb2C MXene assisted CoNi bimetallic catalysts for hydrogenolysis of aromatic ethers. Sustainable Energy and Fuels, 2021, 5, 963-972.	4.9	4
174	Coâ€polymerization of propylene oxide and CO 2 using early transition metal (groups IV and V) metallocalix[n]arenes (n = 4, 6, 8). Journal of Applied Polymer Science, 2021, 138, 50513.	2.6	4
175	Efficient and selective oxidation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts. Molecular Catalysis, 2021, 505, 111530.	2.0	4
176	(S)-5-prolylamide-triazole Organocatalyst for Direct Asymmetric Aldol Reactions. Current Organic Chemistry, 2013, 17, 1563-1568.	1.6	4
177	Efficient and selective hydrogenation of quinolines over FeNiCu/MCM-41 catalyst at low temperature: Synergism of Fe-Ni and Ni-Cu alloys. Molecular Catalysis, 2022, 520, 112166.	2.0	4
178	XPS STUDY OF IRON CATALYSTS FOR FISCHER-TROPSCH SYNTHESIS. Petroleum Science and Technology, 1995, 13, 559-567.	0.2	3
179	Synthesis and characterization of two bis $(\hat{l}\cdot 5$ -methylcyclopentadienyl)hydroxynaphthoatotitanium complexes. Journal of Coordination Chemistry, 2009, 62, 1594-1603.	2,2	3
180	Carbon Fibers/Poly(trifluoroethyl methacrylate) Composites Synthesized under Supercritical CO2. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 828-833.	2.2	3

#	Article	IF	Citations
181	Diethanol ammonium-borate based polybetaine with tunable UCST phase transition. Chinese Journal of Polymer Science (English Edition), 2016, 34, 777-784.	3.8	3
182	Interaction between ammonium perfluorooctanoate and CO2 and its removal from fluoropolymer in supercritical carbon dioxide. Separation and Purification Technology, 2020, 232, 115955.	7.9	3
183	Catalytic Behavior of Alkali Treated H-MOR in Selective Synthesis of Ethylenediamine via Condensation Amination of Monoethanolamine. Catalysts, 2020, 10, 386.	3.5	3
184	Experimental and density functional theory studies on hydroxymethylation of phenylboronic acids with paraformaldehyde over a RhPPh ₃ catalyst. Applied Organometallic Chemistry, 2021, 35, e6104.	3.5	3
185	CO2 oxidative dehydrogenation of n-butane to butadiene over CrOx supported on CeZr solid solution. Molecular Catalysis, 2022, 524, 112262.	2.0	3
186	EFFECTS OF OXYGEN ON THE FT SYNTHESIS OVER Fe-Cu-K CATALYST. Petroleum Science and Technology, 1995, 13, 215-223.	0.2	2
187	MOSSBAUER STUDY OF Fe-Cu-K CATALYST FOR FISCHER-TROPSCH SYNTHESIS. Petroleum Science and Technology, 1996, 14, 805-820.	0.2	2
188	Insights into the unexpected formation of hexamethylbenzene during steam reforming of dimethyl ether over zeolite-based bifunctional catalysts. Catalysis Today, 2013, 210, 75-80.	4.4	2
189	Equilibrating Immigration and Anthracene-Maleimide-Based Diels–Alder-Trapping of Octylmaleimide in Mixed Photo-Cross-Linked Polymer Micelles. Langmuir, 2014, 30, 14782-14788.	3.5	2
190	One-step green approach for synthesizing highly ordered pillaring materials via ultrafast transportation. Applied Clay Science, 2016, 124-125, 137-142.	5.2	2
191	Insight into the Intermolecular Interaction and Free Radical Polymerizability of Methacrylates in Supercritical Carbon Dioxide. Polymers, 2020, 12, 78.	4.5	2
192	Rational Designed Polymer as a Metal-Free Catalyst for Hydroxylation of Benzene to Phenol with Dioxygen. Catalysis Letters, 2021, 151, 1330-1335.	2.6	2
193	N-formylation of isoquinoline derivatives with CO2 and H2 over a heterogeneous Ru/ZIF-8 catalyst. Journal of Experimental Nanoscience, 2022, 17, 61-74.	2.4	2
194	Texture and acidity of amorphous silica-alumina regulated by the complex-decomposition method for steam reforming of dimethyl ether. Catalysis Today, 2022, 402, 172-182.	4.4	2
195	Preparation and characterization of highly dispersed nanocrystalline rutile powders. Materials Letters, 2007, 61, 2798-2803.	2.6	1
196	Grafting of polystyrene and poly(<i>p</i> êchlorostyrene) from the surface of ramie fiber via RAFT polymerization. Journal of Applied Polymer Science, 2010, 117, 3551-3557.	2.6	1
197	Synthesis and Characterization of Thermo-responsive Poly(<i>N</i> -isopropylacrylamide) Micelles. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1026-1031.	2.2	1
198	Insight into the acidic group-induced nitration mechanism of 2-methyl-4,6-dihydroxypyrimidine (MDP) with nitronium. RSC Advances, 2016, 6, 80145-80157.	3.6	1

#	Article	lF	Citations
199	Impact of the acidic group on the hydrolysis of 2-dinitromethylene-5,5-dinitropyrimidine-4,6-dione. RSC Advances, 2018, 8, 13301-13309.	3.6	1
200	Backboneâ€Hydrolyzable Poly(oligo(ethylene glycol) bis(glycidyl ether)―alt â€ketoglutaric acid) with Tunable LCST Behavior. Macromolecular Chemistry and Physics, 2019, 220, 1900004.	2.2	1
201	Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N―tri â€Doped Hierarchically Porous Carbon Nanosheets. Angewandte Chemie, 2021, 133, 21649-21655.	2.0	1
202	Synthesis of TiO2/ramie fiber composite and its photocatalytic effect on the degradation of a dye in wastewater. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 515-528.	1.7	0
203	Supercritical Fluid and its Application. , 2012, , .		0
204	Oxidative Dehydrogenation of Ethylbenzene with CO2., 2012,,.		0
205	Investigation of the optimal treatment condition for flax rove in supercritical CO2. Thermal Science, 2018, 22, 1613-1619.	1.1	0
206	A Multi-modal Panoramic Speaker Localization Method. , 2021, , .		0