Tovah N Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6275064/publications.pdf Version: 2024-02-01

ΤΟΥΛΗ Ν SHAW

#	Article	IF	CITATIONS
1	Do Concentration or Activity of Selenoproteins Change in Acute Stroke Patients? A Systematic Review and Meta-Analyses. Cerebrovascular Diseases, 2022, 51, 461-472.	1.7	1
2	Hematopoietic stem and progenitor cells are present in healthy gingiva tissue. Journal of Experimental Medicine, 2021, 218, .	8.5	11
3	Alterations in T and B cell function persist in convalescent COVID-19 patients. Med, 2021, 2, 720-735.e4.	4.4	87
4	Ongoing Exposure to Peritoneal Dialysis Fluid Alters Resident Peritoneal Macrophage Phenotype and Activation Propensity. Frontiers in Immunology, 2021, 12, 715209.	4.8	7
5	Memory CD8 ⁺ T cells exhibit tissue imprinting and nonâ€stable exposureâ€dependent reactivation characteristics following bloodâ€stage <i>Plasmodium berghei</i> ANKA infections. Immunology, 2021, 164, 737-753.	4.4	2
6	Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Science Immunology, 2020, 5, .	11.9	198
7	Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages. Science Immunology, 2020, 5, .	11.9	60
8	Infection-Induced Resistance to Experimental Cerebral Malaria Is Dependent Upon Secreted Antibody-Mediated Inhibition of Pathogenic CD8+ T Cell Responses. Frontiers in Immunology, 2019, 10, 248.	4.8	6
9	ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. Journal of Experimental Medicine, 2019, 216, 2714-2723.	8.5	52
10	Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Science Translational Medicine, 2018, 10, .	12.4	200
11	Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. Journal of Experimental Medicine, 2018, 215, 1507-1518.	8.5	272
12	Targeting the IL33–NLRP3 axis improves therapy for experimental cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7404-7409.	7.1	37
13	Macrophages in gastrointestinal homeostasis and inflammation. Pflugers Archiv European Journal of Physiology, 2017, 469, 527-539.	2.8	129
14	Gamma Interferon Mediates Experimental Cerebral Malaria by Signaling within Both the Hematopoietic and Nonhematopoietic Compartments. Infection and Immunity, 2017, 85, .	2.2	23
15	A quantitative brain map of experimental cerebral malaria pathology. PLoS Pathogens, 2017, 13, e1006267.	4.7	73
16	Parasite-Specific CD4 ⁺ IFN-γ ⁺ IL-10 ⁺ T Cells Distribute within Both Lymphoid and Nonlymphoid Compartments and Are Controlled Systemically by Interleukin-27 and ICOS during Blood-Stage Malaria Infection. Infection and Immunity, 2016, 84, 34-46.	2.2	24
17	Long-Lived CD4+IFN-Î ³ + T Cells rather than Short-Lived CD4+IFN-Î ³ +IL-10+ T Cells Initiate Rapid IL-10 Production To Suppress Anamnestic T Cell Responses during Secondary Malaria Infection. Journal of Immunology, 2016, 197, 3152-3164.	0.8	24
18	Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria. PLoS Pathogens, 2015, 11, e1005210.	4.7	78

Τονάη Ν Shaw

#	Article	IF	CITATIONS
19	IL-33-Mediated Protection against Experimental Cerebral Malaria Is Linked to Induction of Type 2 Innate Lymphoid Cells, M2 Macrophages and Regulatory T Cells. PLoS Pathogens, 2015, 11, e1004607.	4.7	112
20	The Subcellular Location of Ovalbumin in Plasmodium berghei Blood Stages Influences the Magnitude of T-Cell Responses. Infection and Immunity, 2014, 82, 4654-4665.	2.2	15
21	IFN-γ–Producing CD4+ T Cells Promote Experimental Cerebral Malaria by Modulating CD8+ T Cell Accumulation within the Brain. Journal of Immunology, 2012, 189, 968-979.	0.8	166
22	Heterogeneous and Tissue-Specific Regulation of Effector T Cell Responses by IFN-γ during Plasmodium berghei ANKA Infection. Journal of Immunology, 2011, 187, 2885-2897.	0.8	48